scholarly journals Application of an Adaptive Pole Placement Method to an Active Vibration Control System

1989 ◽  
Vol 25 (7) ◽  
pp. 821-823
Author(s):  
Mitsushi HINO ◽  
Zenta IWAI
2021 ◽  
Author(s):  
Yong Xia

Vibration control strategies strive to reduce the effect of harmful vibrations such as machining chatter. In general, these strategies are classified as passive or active. While passive vibration control techniques are generally less complex, there is a limit to their effectiveness. Active vibration control strategies, which work by providing an additional energy supply to vibration systems, on the other hand, require more complex algorithms but can be very effective. In this work, a novel artificial neural network-based active vibration control system has been developed. The developed system can detect the sinusoidal vibration component with the highest power and suppress it in one control cycle, and in subsequent cycles, sinusoidal signals with the next highest power will be suppressed. With artificial neural networks trained to cover enough frequency and amplitude ranges, most of the original vibration can be suppressed. The efficiency of the proposed methodology has been verified experimentally in the vibration control of a cantilever beam. Artificial neural networks can be trained automatically for updated time delays in the system when necessary. Experimental results show that the developed active vibration control system is real time, adaptable, robust, effective and easy to be implemented. Finally, an experimental setup of chatter suppression for a lathe has been successfully implemented, and the successful techniques used in the previous artificial neural network-based active vibration control system have been utilized for active chatter suppression in turning.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 531-540
Author(s):  
Tao Lai ◽  
Junfeng Liu

In order to improve the vibration responses of rotor system, this paper presents an active vibration control technique for a rotor-bearing-actuator system with the use of robust eigenvalue placement method. By analyzing the characteristics of the piezoelectric stack actuator, bearing and rotor, a rotor-bearing-actuator system is modeled. Based on this dynamical model, a reduced-order technique is used to establish the state equation in the modal space. A robust eigenvalue placement method, which can enhance the robustness of system to model error and uncertain factors by optimizing the close-loop eigenmatrix with a small condition number, is proposed to carry out the active vibration control for system. The good results indicate that the eigenvalue can be placed to precise position, and the displacement responses get effectively suppressed with the proposed method. Meanwhile, the optimized close-loop eigenmatrix can possess a small condition number, which means the system has achieved excellent robustness.


Sign in / Sign up

Export Citation Format

Share Document