Online monitoring and self-tuning control using pole placement method for active vibration control of a flexible beam

2013 ◽  
Vol 21 (3) ◽  
pp. 449-460 ◽  
Author(s):  
Mohd Sazli Saad ◽  
Hishamuddin Jamaluddin ◽  
Intan Zaurah Mat Darus
Author(s):  
Lawrence R. Corr ◽  
William W. Clark

Abstract This paper presents a numerical study in which active and hybrid vibration confinement is compared with a conventional active vibration control method. Vibration confinement is a vibration control technique that is based on reshaping structural modes to produce “quiet areas” in a structure as opposed to adding damping as in conventional active or passive methods. In this paper, active and hybrid confinement is achieved in a flexible beam with two pairs of piezoelectric actuators and sensors and with two vibration absorbers. For comparison purposes, active damping is achieved also with two pairs of piezoelectric actuators and sensors using direct velocity feedback. The results show that both approaches are effective in controlling vibrations in the targeted area of the beam, with direct velocity feedback being slightly more cost effective in terms of required power. When combined with passive confinement, however, each method is improved with a significant reduction in required power.


2020 ◽  
Vol 53 (3-4) ◽  
pp. 531-540
Author(s):  
Tao Lai ◽  
Junfeng Liu

In order to improve the vibration responses of rotor system, this paper presents an active vibration control technique for a rotor-bearing-actuator system with the use of robust eigenvalue placement method. By analyzing the characteristics of the piezoelectric stack actuator, bearing and rotor, a rotor-bearing-actuator system is modeled. Based on this dynamical model, a reduced-order technique is used to establish the state equation in the modal space. A robust eigenvalue placement method, which can enhance the robustness of system to model error and uncertain factors by optimizing the close-loop eigenmatrix with a small condition number, is proposed to carry out the active vibration control for system. The good results indicate that the eigenvalue can be placed to precise position, and the displacement responses get effectively suppressed with the proposed method. Meanwhile, the optimized close-loop eigenmatrix can possess a small condition number, which means the system has achieved excellent robustness.


2015 ◽  
Vol 660 ◽  
pp. 356-360 ◽  
Author(s):  
Mohd Sazli Saad ◽  
Hishamuddin Jamaluddin ◽  
Intan Zaurah Mat Darus ◽  
Irfan Abd Rahim

Experimental studies are conducted on active vibration control using self-tuning proportional integral derivative and self-tuning proportional iterative learning algorithm control schemes to suppress vibration on a flexible beam via real-time computer control. An experimental rig is developed to investigate controller performance when a change in the dynamic behavior of the flexible beam system occurs. The performance of the self-tuning control schemes is validated experimentally and compared with that of conventional control schemes through the use of an iterative learning algorithm. Experimental results clearly reveal the effectiveness and robustness of the self-tuning control schemes over conventional control schemes.


Sign in / Sign up

Export Citation Format

Share Document