genetic algorithm method
Recently Published Documents


TOTAL DOCUMENTS

249
(FIVE YEARS 72)

H-INDEX

20
(FIVE YEARS 5)

Author(s):  
Jéssica Salomão Lourenção ◽  
Paulo Augusto Tonini Arpini ◽  
Gabriel Erlacher ◽  
Élcio Cassimiro Alves

Abstract The objective of this paper is to present the formulation of the optimization problem and its application to the design of concrete-filled composite columns with and without reinforcement steel bars, according to recommendations from NBR 8800:2008, NBR 16239:2013 and EN 1994-1-1:2004. A comparative analysis between the aforementioned standards is performed for various geometries considering cost, efficiency and materials in order to verify which parameters influence the solution of the composite column that satisfies the proposed problems. The solution of the optimization problem is obtained by using the genetic algorithm method featured in MATLAB’s guide toolbox. For the examples analyzed, results show that concretes with compressive strength greater than 50MPa directly influence the solution of the problem regarding cost and resistance to normal forces.


2021 ◽  
Vol 16 (6) ◽  
pp. 649-656
Author(s):  
Maher Abd Ameer Kadim ◽  
Isam Issa Omran ◽  
Alaa Ali Salman Al-Taai

Flood forecasting and management are one of the most important strategies necessary for water resource and decision planners in combating flood problems. The Muskingum model is one of the most popular and widely used applications for the purpose of predicting flood routing. The particle swarm optimization (PSO) methodology was used to estimate the coefficients of the nonlinear Muskingum model in this study, comparing the results with the methods of genetic algorithm (GA), harmony search (HS), least-squares method (LSM), and Hook-Jeeves (HJ). The average monthly inflow for the Tigris River upstream at the Al-Mosul dam was selected as a case study for estimating the Muskingum model's parameters. The analytical and statistical results showed that the PSO method is the best application and corresponds to the results of the Muskingum model, followed by the genetic algorithm method, according to the following general descending sequence: PSO, GA, LSM, HJ, HS. The PSO method is characterized by its accurate results and does not require many assumptions and conditions for its application, which facilitates its use a lot in the subject of hydrology. Therefore, it is better to recommend further research in the use of this method in the implementation of future studies and applications.


Author(s):  
Samer Hani Hamdar ◽  
Alireza Talebpour ◽  
Kyla D’Sa ◽  
Victor Knoop ◽  
Winnie Daamen ◽  
...  

Pedestrians are among the travelers most vulnerable to collisions that are associated with high fatality and injury rates. The increasing rate of urbanization and mixed land-use construction make walking (along with other non-motorized travel) a predominant transportation mode with a wide variety of behaviors expected. Because of the inherent safety concerns seen in pedestrian transportation infrastructures, especially those with conflicting multimodal movements expected (crosswalks, transit platforms, etc.), it is important that pedestrian behavior is modeled as a risk-taking stochastic behavior that may lead to errors and thus collision formation. In previous work, the complexity and cost associated with building pedestrian models in a cognitive-based environment weighted down the construction of simulation tools that can capture pedestrian-involved collisions, including those seen in shared space environments. In this paper, a tool that will help evaluate the safety of pedestrian traffic is initiated: an extended modeling framework of pedestrian walking behavior is adopted while incorporating different physiological, physical, and decision-making elements. The focus is on operational decisions (i.e., path choices defined by longitudinal and lateral trajectories) with a pre-specified set of origins and destinations. The model relies on the prospect theory paradigm where pedestrians evaluate their acceleration and directional alternatives while considering the possibility of colliding with other “particles.” Using a genetic algorithm method, the new model is calibrated using detailed trajectory data. This model can be extended to model the interactions between a variety of different modes that are present in different mixed land-use environments.


2021 ◽  
Vol 2131 (2) ◽  
pp. 022007
Author(s):  
O V Dubinets ◽  
I M Gubaidullin ◽  
R M Uzyanbaev ◽  
M K Vovdenko ◽  
I G Lapshin

Abstract Annotation. One of the main problems in chemical kinetics is the establishment of the mechanisms of complex chemical reactions. The inverse problem of chemical kinetics is understood as the determination of the dependence of the concentration of the participating components on the basis of experimental data obtained from a laboratory installation for the oxidative regeneration of coked catalysts. One of the main methods used in inverse problems the genetic algorithm. The algorithms considered in the article make it possible to determine the values of the rate constants of the considered chemical stages.


2021 ◽  
Author(s):  
Lingling Zhang ◽  
Huifan He ◽  
Haoyuan Zhong ◽  
Fengtao Lu

Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1550
Author(s):  
Radosław Winiczenko ◽  
Andrzej Skibicki ◽  
Paweł Skoczylas

The friction rotary welding (FRW) of magnesium alloy to aluminum alloy was presented in a paper due to significant interest in the manufacturing industry. A genetic algorithm (GA) method for optimizing FRW process parameters of dissimilar light alloys was presented. After obtaining the welding parameters by GA method, it was possible to determine the best tensile strength of the friction joint. The obtained joints were subjected to tensile strength. The highest tensile strength TS = 178 MPa was found using a genetic algorithm for the following friction welding parameters: friction force FF = 16 kN, friction time FT = 4 s, and upsetting force UF = 44 kN. The optimized values were compared with the experimental results. The application of the genetic algorithm method allowed increasing the tensile strength joint from 88 to 180 MPa. The maximum tensile strength of the friction welded magnesium alloy-aluminum alloy joints was 73% of the base AZ31B metal. The relationship between welding parameters and strenght of welds was also demonstrated in this study.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255993
Author(s):  
Dorota Łozowicka

The article concerns the problem of evacuation from passenger ships. It is important because it has not yet been possible to eliminate all the hazards associated with sea travel. In this paper, a concept of a method allowing to determine the arrangement of evacuation routes, for which evacuation time would be minimal, was presented. The genetic algorithm method was used in the calculations, and an original method of coding the considered problem was proposed. Sample calculations were performed to verify the correctness of the proposed algorithm. The results of applying the developed method to calculate the evacuation time on a real passenger ship are presented.


Sign in / Sign up

Export Citation Format

Share Document