exotic invasive plants
Recently Published Documents


TOTAL DOCUMENTS

17
(FIVE YEARS 1)

H-INDEX

10
(FIVE YEARS 0)

2020 ◽  
Vol 28 (6) ◽  
pp. 727-733
Author(s):  
Xue Han ◽  
Jinquan Su ◽  
Nana Yao ◽  
Baoming Chen ◽  


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4793 ◽  
Author(s):  
Chelsea L. Blankenchip ◽  
Dana E. Michels ◽  
H. Elizabeth Braker ◽  
Shana K. Goffredi

The beetle genus Cephaloleia has evolved in association with tropical ginger plants and for many species their specific host plant associations are known. Here we show that the core microbiome of six closely related Costa Rican Cephaloleia species comprises only eight bacterial groups, including members of the Acinetobacter, Enterobacteriacea, Pseudomonas, Lactococcus, and Comamonas. The Acinetobacter and Enterobacteriacea together accounted for 35% of the total average 16S rRNA ribotypes recovered from all specimens. Further, microbiome diversity and community structure was significantly linked to beetle diet breadth, between those foraging on less than two plant types (specialists) versus over nine plant types (generalists). Moraxellaceae, Enterobacteriaceae, and Pseudomonadaceae were highly prevalent in specialist species, and also present in eggs, while Rickettsiaceae associated exclusively with generalist beetles. Bacteria isolated from Cephaloleia digestive systems had distinct capabilities and suggested a possible beneficial role in both digestion of plant-based compounds, including xylose, mannitol, and pectin, and possible detoxification, via lipases. Cephaloleia species are currently expanding their diets to include exotic invasive plants, yet it is unknown whether their microbial community plays a role in this transition. In this study, colonization of invasive plants was correlated with a dysbiosis of the microbiome, suggesting a possible relationship between gut bacteria and niche adaptation.



2018 ◽  
Author(s):  
Chelsea L. Blankenchip ◽  
Dana E. Michels ◽  
H. Elizabeth Braker ◽  
Shana K. Goffredi

The beetle genus Cephaloleia has evolved in association with tropical ginger plants and for many species their specific host plant associations are known. Here we show that the core microbiome of six closely-related Costa Rican Cephaloleia species comprises only 8 bacterial groups, including members of the Acinetobacter, Enterobacteriacea, Pseudomonas, Lactococcus, and Comamonas. The Acinetobacter and Enterobacteriacea together accounted for 35% of the total average 16S rRNA ribotypes recovered from all specimens. Further, microbiome diversity and community structure was significantly linked to beetle diet breadth, between those foraging on <2 plant types (specialists) versus 9+ plants (generalists). Moraxellaceae, Enterobacteriaceae, and Pseudomonadaceae were highly prevalent in specialist species, and also present in eggs, while Rickettsiaceae associated exclusively with generalist beetles. Bacteria isolated from Cephaloleia digestive systems had complementary capabilities and suggested a possible beneficial role in both digestion of plant-based compounds, including xylose, mannitol, and pectin, and possible detoxification, via lipases. Cephaloleia species are currently expanding their diets to include exotic invasive plants, yet it is unknown whether their microbial community plays a role in this transition. In this study, colonization of invasive plants was correlated with a dysbiosis of the microbiome, suggesting a possible relationship between gut bacteria and niche adaptation.



Author(s):  
Chelsea L. Blankenchip ◽  
Dana E. Michels ◽  
H. Elizabeth Braker ◽  
Shana K. Goffredi

The beetle genus Cephaloleia has evolved in association with tropical ginger plants and for many species their specific host plant associations are known. Here we show that the core microbiome of six closely-related Costa Rican Cephaloleia species comprises only 8 bacterial groups, including members of the Acinetobacter, Enterobacteriacea, Pseudomonas, Lactococcus, and Comamonas. The Acinetobacter and Enterobacteriacea together accounted for 35% of the total average 16S rRNA ribotypes recovered from all specimens. Further, microbiome diversity and community structure was significantly linked to beetle diet breadth, between those foraging on <2 plant types (specialists) versus 9+ plants (generalists). Moraxellaceae, Enterobacteriaceae, and Pseudomonadaceae were highly prevalent in specialist species, and also present in eggs, while Rickettsiaceae associated exclusively with generalist beetles. Bacteria isolated from Cephaloleia digestive systems had complementary capabilities and suggested a possible beneficial role in both digestion of plant-based compounds, including xylose, mannitol, and pectin, and possible detoxification, via lipases. Cephaloleia species are currently expanding their diets to include exotic invasive plants, yet it is unknown whether their microbial community plays a role in this transition. In this study, colonization of invasive plants was correlated with a dysbiosis of the microbiome, suggesting a possible relationship between gut bacteria and niche adaptation.



2016 ◽  
Vol 104 (4) ◽  
pp. 994-1002 ◽  
Author(s):  
Morgan Luce McLeod ◽  
Cory C. Cleveland ◽  
Ylva Lekberg ◽  
John L. Maron ◽  
Laurent Philippot ◽  
...  


2015 ◽  
Vol 39 (4) ◽  
pp. 603-610
Author(s):  
Vinícius Londe ◽  
Hildeberto Caldas de Sousa ◽  
Alessandra Rodrigues Kozovits

ABSTRACTAs important as the establishment of projects of ecological restoration is its assessment post-implementation to know whether the area is becoming self-sustainable or need to be redirected. In this way, this study aimed to know the current situation of a 5-year-old rehabilitated riparian forest,inserted in an anthropogenic impacted region,at the das Velhas River, Minas Gerais State, studying the canopy openness and recruitment of seedlings as plant indicators. 15 plots were allocated in the forest, where hemispherical photographs were taken to analyze the canopy openness and evaluate all seedlings from 0.30 m to 1.30 m height.Canopy openness ranged from 23.7% to 38.8% between seasons and only 192 seedlings were found,from 13 species, five of them exotic and aggressive. Although canopy openness was low, it seems that lateral penetration of light has been favoring the development and dominancy of plants from invasive species, whereas few native ones have been recruited. The exotic/invasive plants may compromise the success of restoration mainly by competition with native planted species. The outcomes evidenced an unsustainability of the riparian forest and the requirement of some management actions to control exotic and invasive plants and ensure the preservation of the area and its ecological roles over time.



2014 ◽  
Vol 29 (5) ◽  
pp. 683-693 ◽  
Author(s):  
Evin T. Carter ◽  
Bryan C. Eads ◽  
Michael J. Ravesi ◽  
Bruce A. Kingsbury


2012 ◽  
Vol 5 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Bryan A. Endress ◽  
Catherine G. Parks ◽  
Bridgett J. Naylor ◽  
Steven R. Radosevich ◽  
Mark Porter

AbstractHerbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram applications to be important to the native forb community. Plots with picloram applied in the fall had greater native forb cover. However, without the addition of native perennial grass seeds, the sites became dominated by exotic grasses. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.







Sign in / Sign up

Export Citation Format

Share Document