Grassland Response to Herbicides and Seeding of Native Grasses 6 Years Posttreatment

2012 ◽  
Vol 5 (3) ◽  
pp. 311-316 ◽  
Author(s):  
Bryan A. Endress ◽  
Catherine G. Parks ◽  
Bridgett J. Naylor ◽  
Steven R. Radosevich ◽  
Mark Porter

AbstractHerbicides are the primary method used to control exotic, invasive plants. This study evaluated restoration efforts applied to grasslands dominated by an invasive plant, sulfur cinquefoil, 6 yr after treatments. Of the five herbicides we evaluated, picloram continued to provide the best control of sulfur cinquefoil over 6 yr. We found the timing of picloram applications to be important to the native forb community. Plots with picloram applied in the fall had greater native forb cover. However, without the addition of native perennial grass seeds, the sites became dominated by exotic grasses. Seeding resulted in a 20% decrease in exotic grass cover. Successful establishment of native perennial grasses was not apparent until 6 yr after seeding. Our study found integrating herbicide application and the addition of native grass seed to be an effective grassland restoration strategy, at least in the case where livestock are excluded.

2000 ◽  
Vol 51 (3) ◽  
pp. 377 ◽  
Author(s):  
G. M. Lodge

Seedlings of 3 perennial grasses, Danthonia linkii Kunthcv. Bunderra, D. richardsonii Cashmore cv. Taranna(wallaby grasses), and Phalaris aquatica L. cv. Sirosa,were each grown in replacement series mixtures with seedlings ofTrifolium repens L. (white clover),Trifolium subterraneum L. var. brachycalycinum (Katzn.et Morley) Zorahy & Heller cv. Clare (subterraneanclover), and Lolium rigidum L. (annual ryegrass). Plantswere sown 5 cm apart in boxes (45 by 29 by 20 cm) at a density of 307plants/m2. Maximum likelihood estimates were usedto derive parameters of a non-linear competition model using the dry matterweights of perennial grasses and competitors at 3 harvests, approximately 168,216, and 271 days after sowing. Intra-plant competition was examined inmonocultures of each species, grown at plant spacings of 2, 5, and 8 cm apartwith plants harvested at the above times.Competition occurred in all perennial grass–competitor mixtures, exceptin those of each perennial grass with white clover and thephalaris–subterranean clover mixture (Harvest 1) and those withD. richardsonii and phalaris grown with white clover(Harvest 2). For D. richardsonii (Harvests 1 and 2) andD. linkii (Harvest 1 only) grown with white clover andthe phalaris–subterranean clover (Harvest 1), the two species in themixture were not competing. In the phalaris–white clover mixture, eachspecies was equally competitive (Harvests 1 and 2). These differences incompetition and aggressiveness reflected differences in individual plantweights in monocultures where there was an effect (P < 0.05) of species ondry matter weight per box, but no significant effect of plant spacing.These data indicated that for successful establishment,D. richardsonii and D. linkiishould not be sown in swards with either subterranean clover or white clover,or where populations of annual ryegrass seedlings are likely to be high.Phalaris was more compatible with both white clover and subterranean clover,but aggressively competed with by annual ryegrass.


2006 ◽  
Vol 54 (7) ◽  
pp. 655 ◽  
Author(s):  
Tanja I. Lenz ◽  
José M. Facelli

The species composition of temperate grasslands in the mid-north of South Australia has been radically altered from a system dominated by native perennial grasses to a system dominated by Mediterranean annual grasses. This study investigated the importance of chemical and physical soil characteristics, topographical features and climatic variables on the abundance of native and exotic grass species in nine ungrazed grasslands. Overall, climatic and other abiotic factors were highly variable. In addition, past management practices and original species composition are generally unknown, leading to further unexplained variation in the data. On a large spatial scale (among sites), the abundance of exotic annual grasses was positively correlated with mean annual rainfall, and on any scale, with finer soil textures and higher soil organic carbon levels. The most abundant annual grass, Avena barbata (Pott ex Link), was generally associated with soil factors denoting higher soil fertility. The abundance of native perennial grass species was not correlated with any environmental variables at any scale. The various native perennial grass species did not show clear associations with soil factors, although they tended to be associated with factors denoting lower soil fertility. However, at small spatial scales (within some sites) and among sites, the abundances of exotic annual and native perennial grasses were strongly negatively correlated. The results suggest that at the present time, rainfall and soil properties are important variables determining the abundance of annual grasses. The driving variables for the abundance of perennial grasses are less clear. They may be controlled by other factors or extreme rainfall events, which were not surveyed. In addition, they are likely to be controlled by competitive interactions with the annual grasses.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Rob G. Wilson ◽  
Debra Boelk ◽  
Guy B. Kyser ◽  
Joseph M. DiTomaso

AbstractPerennial pepperweed is invasive throughout California. It thrives in a wide range of environments and is a common weed in floodplains, pastures, wetlands, and roadsides. In disturbed areas, perennial pepperweed rapidly forms monotypic stands with a thick litter layer. These infestations not only out-compete other vegetation, but prevent re-establishment of desirable species even after perennial pepperweed control. This experiment examined integrated management strategies with the goal of maximizing perennial pepperweed control and establishment of desirable native vegetation. The experiment was conducted at two sites in Lassen County, CA. Both sites were heavily infested with perennial pepperweed and lacked competing vegetation. The experimental design was a split-split-randomized block with four replications. Site preparation treatments included winter burning, summer and fall mowing, winter grazing, and fall disking. These treatments were designed to remove thatch to facilitate herbicide application and reseeding of desirable perennial grasses. Herbicide treatments included chlorsulfuron, 2,4-D, or glyphosate applied at the flower bud stage. Revegetation treatments included no seeding and no-till seeding of native perennial grasses. Most site preparation plus herbicide combinations reduced perennial pepperweed cover > 85% compared to the untreated control, although treatment efficacy was variable between sites and years. Burning, grazing, mowing, or disking in combination with herbicide treatment and no-till seeding was necessary for successful native perennial grass establishment. Burning or mowing with yearly 2,4-D applications for 3 yr gave the best combination of perennial pepperweed control and native grass establishment. Chlorsulfuron caused chlorosis and stunting to western wheatgrass, basin wildrye, and beardless wildrye at both sites when applied the spring before seeding. No treatment offered complete weed control, suggesting follow-up spot herbicide applications are needed for long-term perennial pepperweed suppression. These results provide several successful integrated strategies for control of perennial pepperweed and revegetation to a desired native perennial grass community.


2017 ◽  
Vol 39 (1) ◽  
pp. 59
Author(s):  
Ronald B. Hacker ◽  
Ian D. Toole ◽  
Gavin J. Melville ◽  
Yohannes Alemseged ◽  
Warren J. Smith

Treatments to reduce available soil nitrogen and achieve specified levels of weed control were evaluated for their capacity to promote regeneration of native perennial grasses in a degraded semi-arid woodland in central-western New South Wales. Treatments were factorial combinations of nitrogen-reduction levels and weed-control levels. The four levels of nitrogen reduction were no intervention, and oversowing of an unfertilised summer crop, an unfertilised winter crop or an unfertilised perennial grass. The three weed-control levels were defined by the outcome sought rather than the chemical applied and were nil, control of annual legumes and control of all annual species (AA). Regeneration of perennial grasses, predominantly Enteropogon acicularis, was promoted most rapidly by the AA level of weed control with no introduction of sown species. Sown species negated the benefits of weed control and limited but did not prevent the regeneration of native perennials. Sown species also contributed substantially to biomass production, which was otherwise severely limited under the AA level of weed control, and they were effective in reducing soil nitrogen availability. Sown species in combination with appropriate herbicide use can therefore maintain or increase available forage in the short–medium term, permit a low rate of native perennial grass recruitment, and condition the system (by reducing soil mineral nitrogen) for more rapid regeneration of native perennials should annual sowings be discontinued or a sown grass fail to persist. Soil nitrate was reduced roughly in proportion to biomass production. High levels of soil nitrate did not inhibit native perennial grass regeneration when biomass was suppressed by AA weed control, and may be beneficial for pastoral production, but could also render sites more susceptible to future invasion of exotic annuals. The need for astute grazing management of the restored grassland is thus emphasised. This study was conducted on a site that supported a remnant population of perennial grasses. Use of the nitrogen-reduction techniques described may not be appropriate on sites where very few perennial grass plants remain.


2014 ◽  
Vol 7 (3) ◽  
pp. 387-397 ◽  
Author(s):  
Chengchou Han ◽  
Stephen L. Young

AbstractRoot architecture of prairie grasslands, which depends on plant phenology and edaphic conditions, strongly influences susceptibility to invasion by nonindigenous plant species. Field studies were conducted to compare in situ root growth patterns of warm-season (WS) and cool-season (CS) perennial grasses and musk thistle during a 2-yr period that included a drought in the second year. In 2 yr, CS grasses had the highest amount of roots (1,296 m roots m−2 [395 ft roots ft−2]) across shallow (0 to 28 cm [0 to 11 in.]), medium (28 to 56 cm), and deep (56 to 98 cm) depths with 65% occurring in the shallow depths. However, roots of WS grasses were always greater at deeper depths compared to roots of CS grasses. The amount of new roots in CS grasses was statistically different in 2011 (F2,43 = 33.3, P < 0.0001) at all depths for vegetative (April to May), inflorescence (June), and dormant (July to November) stages. In 2012, the amount of new roots in CS and WS grasses was statistically different (F2,60 = 81.7, P < 0.0001 and F2,37 = 8.0, P = 0.0013), respectively, for vegetative (April to May), inflorescence (May to June), and dormant (June to November) stages. For both years, the amount of new roots in the CS grasses showed an interaction between the three growth stages and three soil depths (F2,62 = 33.3, P < 0.0001 [2011]; F4,60 = 18.6, P < 0.0001 [2012]). From germination to senescence, the total amount of musk thistle roots was 298 m roots m−2, which was less than the CS (1,296 m roots m−2) and WS (655 m roots m−2) grasses. The largest proportion of new musk thistle roots (61%) (F2,42 = 40.4, P < 0.0001) occurred during the bolting stage (April to June) of the second year. These results show the difference in root distribution of two grass types and the niches that are created underground by extraneous conditions (e.g., drought) in WS grass stands that may contribute to the establishment of musk thistle, an invasive plant species in many North American regions.


2011 ◽  
Vol 4 (1) ◽  
pp. 159-165 ◽  
Author(s):  
Jordana J. LaFantasie ◽  
Stephen F. Enloe

AbstractBlack henbane is a poisonous, invasive plant in the family Solanaceae, and is typically associated with highly disturbed environments, such as pipelines, roadsides, and mammalian burrows. Often, such disturbances require reseeding for successful restoration; thus, the potential exists for competition between henbane and perennial grasses commonly used in restoration projects. These competitive interactions have not, to our knowledge, been evaluated. We conducted a greenhouse study to compare the response of henbane when grown alone and in combination with three common, cool season, perennial, northern mixed prairie grass species. We examined both seedling and mature grass response to the presence or absence of henbane and the response of henbane to the grasses. Using the relative neighbor-effect index, black henbane was found to be a very poor competitor with mature grasses and two out of three seedling grasses tested. All measures of henbane growth were significantly lower among plants grown with a mature grass pot companion. Total biomass of henbane was up to 99% lower when grown with mature grasses. Mature grasses were not negatively affected when grown in combination with henbane. Western wheatgrass (Pascopyrum smithii) was the only seedling grass that was competitive with henbane but was also the only seedling grass negatively affected by henbane in both biomass and tiller production. These experiments suggest that henbane is not well suited for invasion of mature grass stands but may negatively influence some perennial grass seedlings in restoration situations.


2008 ◽  
Vol 1 (4) ◽  
pp. 368-375
Author(s):  
Stephen L. Young ◽  
Victor P. Claassen

AbstractWithin highway rights-of-way, native perennial grasses provide desirable services to support natural and human constructed ecosystems. However, native perennial grass establishment in annual grass dominated roadsides of semiarid and Mediterranean climates of the western United States requires specific cultural and chemical management treatments to control weeds. In 2004, field studies were conducted in Sacramento Valley, California to determine the effect of herbicide, disc cultivation, and species selection on native perennial grass establishment and annual weed persistence. Perennial grass species mixes common to drier and wetter upland areas in northern California were drill seeded at two sites (I-5 North and I-5 South) that had been burned in 2003 and received weed control (i.e., herbicide, cultivation, mowing) in spring 2004. Herbicides were the most important treatments for native perennial grass establishment and weed reduction. Native perennial grass species persistence was largely unaffected by cultivation or native plant accessions at these sites. Native perennial grass density increased at I-5 North in the second year of growth (2006) resulting in a plant density totaled across all herbicide regimes of 3.9 plants m−1 compared to 2.5 plants m−1 at I-5 South. Vigorous native perennial grass growth in the more fertile and less droughty soils of I-5 North helped to limit annual weeds through competition, which is anticipated to reduce the need for chemical and mechanical control in years following early establishment.


2008 ◽  
Vol 59 (3) ◽  
pp. 237 ◽  
Author(s):  
W. B. Badgery ◽  
D. R. Kemp ◽  
D. L. Michalk ◽  
W. McG. King

Native perennial grass competition can substantially reduce the invasion of Nassella trichotoma (serrated tussock), a major perennial grass weed problem in south-eastern Australia. This paper reports on a field experiment that investigated the recruitment of N. trichotoma seedlings, and determined what level of native grass competition was needed to prevent establishment in the central-west of NSW. Grasslands that maintained >2 t dry matter (DM)/ha and 100% ground cover (measured in spring) prevented N. trichotoma seedling recruitment. Relatively small amounts of perennial grass (>0.5 t DM/ha measured in spring) resulted in mortality of N. trichotoma seedlings that had recruited earlier in the year, through the next summer. Flupropanate also markedly reduced native perennial grasses and substantially increased N. trichotoma seedling establishment 12 months after application. Rotational grazing to maintain adequate levels of DM was an important management tactic that prevented N. trichotoma establishment and survival.


2008 ◽  
Vol 1 (1) ◽  
pp. 66-72 ◽  
Author(s):  
Carl E. Bell ◽  
Todd Easley ◽  
Kari Roesch Goodman

AbstractFennel is a major invasive plant in many lower elevation natural areas in coastal California. Three identical field experiments were conducted to evaluate glyphosate and triclopyr for control of fennel. Treatments included each herbicide applied alone and in various combinations. We also compared broadcast applications to spot spraying of individual fennel plants because spot spraying is a commonly used technique in natural area weed management. Most treatments controlled fennel well when evaluated 6 wk and 1 yr after treatment, with the exception of the lowest rate of glyphosate. Purple needlegrass, a native perennial grass, was present in two of the sites. In most, but not all, treatment and site combinations, it was not significantly harmed by the herbicides. The spot spray applications were less effective and used more herbicide per unit area than the broadcast spraying.


2014 ◽  
Vol 7 (3) ◽  
pp. 532-539 ◽  
Author(s):  
Claudia S. Ingham

AbstractHimalaya blackberry is a nonnative shrub that has invaded sites throughout the Pacific Northwest. Its persistent canopy and large underground crowns create a competitive environment that prevents desirable species from germinating, establishing, or both. Cutleaf blackberry grows in association with Himalaya blackberry, and control efforts frequently target these two species. Control of Himalaya blackberry is complicated by vigorous vegetative regrowth after mechanical control, including mowing, and variable response to chemical methods. Recent interest in the use of goat browsing for invasive plant control has led land managers to use a variety of browsing regimes to control unwanted species through disturbance by herbivory. This study examined changes in functional group percent cover in a perennial grass pasture invaded by Himalaya blackberry and cutleaf blackberry in the southern Willamette Valley of Oregon. The appearance of species and their functional group membership after three treatment protocols are evaluated. Changes in the percentage of cover by Himalaya and cutleaf blackberries, annual grasses, perennial grasses, annual forbs, and perennial forbs were examined after two annual treatments with (1) high-intensity–short-duration goat browsing, (2) mowing, and (3) high-intensity–short-duration goat browsing followed by mowing. These data were then compiled by functional group to assess trends in the plants' revegetating the pasture after treatment. All treatments caused a significant decline in the percent cover of the invasive blackberries (P < 0.0001), but differences among treatments were not significant. The increase in the percent cover of perennial forbs for plots treated with goat browsing followed by mowing was significantly greater (P = 0.008) than it was in plots browsed only and those mowed only. Changes in percent cover of other functional groups were not significantly different with browsing or mowing treatments. Individual species within the perennial grass and perennial forb groups are discussed.


Sign in / Sign up

Export Citation Format

Share Document