analytic center
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 0)

2022 ◽  
pp. 100112
Author(s):  
Cecilia S. Lee ◽  
Marian Blazes ◽  
Alice Lorch ◽  
Suzann Pershing ◽  
Leslie Hyman ◽  
...  

Author(s):  
Riley Badenbroek ◽  
Etienne de Klerk

We propose an analytic center cutting plane method to determine whether a matrix is completely positive and return a cut that separates it from the completely positive cone if not. This was stated as an open (computational) problem by Berman et al. [Berman A, Dur M, Shaked-Monderer N (2015) Open problems in the theory of completely positive and copositive matrices. Electronic J. Linear Algebra 29(1):46–58]. Our method optimizes over the intersection of a ball and the copositive cone, where membership is determined by solving a mixed-integer linear program suggested by Xia et al. [Xia W, Vera JC, Zuluaga LF (2020) Globally solving nonconvex quadratic programs via linear integer programming techniques. INFORMS J. Comput. 32(1):40–56]. Thus, our algorithm can, more generally, be used to solve any copositive optimization problem, provided one knows the radius of a ball containing an optimal solution. Numerical experiments show that the number of oracle calls (matrix copositivity checks) for our implementation scales well with the matrix size, growing roughly like [Formula: see text] for d × d matrices. The method is implemented in Julia and available at https://github.com/rileybadenbroek/CopositiveAnalyticCenter.jl . Summary of Contribution: Completely positive matrices play an important role in operations research. They allow many NP-hard problems to be formulated as optimization problems over a proper cone, which enables them to benefit from the duality theory of convex programming. We propose an analytic center cutting plane method to determine whether a matrix is completely positive by solving an optimization problem over the copositive cone. In fact, we can use our method to solve any copositive optimization problem, provided we know the radius of a ball containing an optimal solution. We emphasize numerical performance and stability in developing this method. A software implementation in Julia is provided.


2021 ◽  
Vol 93 (1) ◽  
pp. 180-189
Author(s):  
Wang Jianhong ◽  
Wang Yanxiang

Purpose The purpose of this paper is to deal with the anomaly detection problem in multi-unmanned aerial vehicles (UAVs) formation that can be transformed to identify some unknown parameters; a more general nonlinear dynamical model for each UAV is considered to include two terms. Due to an unknown parameter corresponding to the normal or abnormal state for each UAV, the bias-compensated approach is proposed to obtain the unbiased parameter estimation. Meanwhile, the biased error and accuracy analysis are also given in case of strict statistical description of the uncertainty or white noise. To relax this strict statistical description on external noise, an analytic center approach is proposed to identify the unknown parameters in presence of bounded noise, such that two inner and outer ellipsoidal approximations are constructed to include the membership set. To be precise, this paper is regarded as one extension and summary for the author’s previous research on the anomaly detection in multi-UAV formation. Finally, one simulation example is given to confirm the theoretical results. Design/methodology/approach Firstly, one extended nonlinear relation is constructed to embody the mutual relationship of UAVs. Secondly, to obtain the unbiased parameter estimations, the bias-compensated approach is applied to achieve it under the condition of white noise. Thirdly, in case of unknown but bounded noise, an analytic center approach is proposed to deal with this special case. Without loss of generality, the author thinks this paper can be used as one extension and summary for research on multi-UAVs formation anomaly detection. Findings An anomaly detection problem in multi-UAVs formation can be transformed into a problem of nonlinear system identification, and in modeling the nonlinear dynamical model for each UAV, two terms are considered simultaneously to embody the mutual relationships with other nearest UAV. Originality/value To the best knowledge of the authors, this problem of the anomaly detection problem in multi-UAVs formation is proposed by the authors’ previous work, and the problem of multi-UAVs formation anomaly detection can be transferred into one problem of parameter identification. In case of unknown but bounded noise, an analytic center approach is proposed to identify the unknown parameters, which correspond to achieve the goal of the anomaly detection.


2021 ◽  
pp. 105-116
Author(s):  
A. M. KOZIN ◽  
◽  
A. D. LYKOV ◽  
I. A. VYAZANKIN ◽  
A. S. VYAZANKIN ◽  
...  

The “Middle Atmosphere” Regional Information and Analytic Center (Central Aerological Observatory) works out algorithms for analyzing the quality of aerological data based on machine learning methods. Different approaches to the data preparation are described, the examples of data that were rejected using standard approaches are given, the ways to develop and improve the quality of aerological information transmitted to the WMO international network are outlined.


2020 ◽  
Vol 48 (4) ◽  
pp. 633-659
Author(s):  
Daniel Bankmann ◽  
Volker Mehrmann ◽  
Yurii Nesterov ◽  
Paul Van Dooren

AbstractIn this paper formulas are derived for the analytic center of the solution set of linear matrix inequalities (LMIs) defining passive transfer functions. The algebraic Riccati equations that are usually associated with such systems are related to boundary points of the convex set defined by the solution set of the LMI. It is shown that the analytic center is described by closely related matrix equations, and their properties are analyzed for continuous- and discrete-time systems. Numerical methods are derived to solve these equations via steepest descent and Newton methods. It is also shown that the analytic center has nice robustness properties when it is used to represent passive systems. The results are illustrated by numerical examples.


Author(s):  
Renan Motta Goulart ◽  
Saulo Moraes Villela ◽  
Carlos Cristiano Hasenclever Borges ◽  
Raul Fonseca Neto
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document