sanitary sewer overflow
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 5)

H-INDEX

3
(FIVE YEARS 0)

2021 ◽  
Vol 21 (5) ◽  
pp. 271-280
Author(s):  
Young Jun Lee ◽  
Chae Young Lee

Even after the sewer system rehabilitation project, sewer system-related problems caused by inflow still persist. However, analysis of the characteristics of the inflow has been limited to specific rainfall events and monitoring points. This study analyzed inflow characteristics according to rainfall events using an XP-SWMM model and the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox. In this study, the XP-SWMM model was built for sewers and collecting pipes in urban areas where classification projects were completed. The R, T, and K parameters were calculated using the SSOAP tool based on the sewer volume data of the study area. The calculated parameters were inputted into the XP-SWMM model and used to analyze R, T, and K of unmeasured sampling intervals. The amount of rainfall-derived inflow and infiltration (RDII) increased according to the amount of rainfall, and the correlation coefficient between the amount of rainfall and the amount of RDII was 0.9352, indicating a high correlation. The results of this study can support efficient facility planning that reflects the rainfall characteristics of specific areas, including areas where actual survey of sewage data is not possible.


2021 ◽  
Vol 3 ◽  
Author(s):  
Vinayak Kaushal ◽  
Mohammad Najafi ◽  
Alimohammad Entezarmahdi

Gravity flow wastewater collection systems are comprised of sewer pipes and manholes. Failure of a manhole may have catastrophic consequences such as developing a sinkhole in the street and roadway, and at a minimum, wastewater flow will be blocked, and stream of the manhole will backup causing a sanitary sewer overflow (SSO). Improving structural conditions of a manhole is critical to minimize these types of failures. This paper considers the impact of several lining materials including cement mortar, epoxy, polyurethane, cured-in-place composites, and a multi-layer structure material on increasing the structural capabilities of deteriorated manholes. The tasks included in this research consist literature search and, preliminary laboratory and main testing of select manhole rehabilitation materials. A finite element analysis is included to complement the experiments. Several preliminary tests according to ASTM C-39 on coated concrete cylinders, and ASTM C-293 on lined concrete beams, were performed at UT Arlington's Center for Underground Infrastructure Research and Education (CUIRE) Laboratory. The test results showed significant increase in the performance of concrete samples under compression and flexure. A second round of testing was performed on 4-ft long, 24-in. diameter concrete pipe sections with 3-in. wall thickness manufactured according to ASTM C-76. These pipe sections were lined internally with the same materials as the preliminary tests, and tested according to ASTM C-497 under Three-Edge-Bearing testing. Using computer data acquisition system, strain gages and displacement extensometers, stress/strain data were measured. The results showed that tested No-Dig manhole rehabilitation materials can significantly improve structural performance of deteriorated manholes.


Author(s):  
Pitiporn Asvapathanagul ◽  
Antony Gabriele ◽  
Rebeka Sultana ◽  
Julio Núñez

Sign in / Sign up

Export Citation Format

Share Document