kronecker coefficients
Recently Published Documents


TOTAL DOCUMENTS

45
(FIVE YEARS 11)

H-INDEX

8
(FIVE YEARS 1)

2021 ◽  
Vol 8 (33) ◽  
pp. 1024-1055
Author(s):  
C. Bessenrodt ◽  
C. Bowman ◽  
L. Sutton

This paper consists of two prongs. Firstly, we prove that any Specht module labelled by a 2-separated partition is semisimple and we completely determine its decomposition as a direct sum of graded simple modules. Secondly, we apply these results and other modular representation theoretic techniques on the study of Kronecker coefficients and hence verify Saxl’s conjecture for several large new families of partitions. In particular, we verify Saxl’s conjecture for all irreducible characters of S n \mathfrak {S}_n which are of 2-height zero.


Author(s):  
Marni Mishna ◽  
Mercedes Helena Rosas Celis ◽  
Sheila Sundaram

2021 ◽  
Vol 177 ◽  
pp. 105297
Author(s):  
C. Bowman ◽  
M. De Visscher ◽  
J. Enyang

2020 ◽  
Vol 29 (2) ◽  
Author(s):  
Nick Fischer ◽  
Christian Ikenmeyer

AbstractIn two papers, Bürgisser and Ikenmeyer (STOC 2011, STOC 2013) used an adaption of the geometric complexity theory (GCT) approach by Mulmuley and Sohoni (Siam J Comput 2001, 2008) to prove lower bounds on the border rank of the matrix multiplication tensor. A key ingredient was information about certain Kronecker coefficients. While tensors are an interesting test bed for GCT ideas, the far-away goal is the separation of algebraic complexity classes. The role of the Kronecker coefficients in that setting is taken by the so-called plethysm coefficients: These are the multiplicities in the coordinate rings of spaces of polynomials. Even though several hardness results for Kronecker coefficients are known, there are almost no results about the complexity of computing the plethysm coefficients or even deciding their positivity.In this paper, we show that deciding positivity of plethysm coefficients is -hard and that computing plethysm coefficients is #-hard. In fact, both problems remain hard even if the inner parameter of the plethysm coefficient is fixed. In this way, we obtain an inner versus outer contrast: If the outer parameter of the plethysm coefficient is fixed, then the plethysm coefficient can be computed in polynomial time. Moreover, we derive new lower and upper bounds and in special cases even combinatorial descriptions for plethysm coefficients, which we consider to be of independent interest. Our technique uses discrete tomography in a more refined way than the recent work on Kronecker coefficients by Ikenmeyer, Mulmuley, and Walter (Comput Compl 2017). This makes our work the first to apply techniques from discrete tomography to the study of plethysm coefficients. Quite surprisingly, that interpretation also leads to new equalities between certain plethysm coefficients and Kronecker coefficients.


2020 ◽  
Vol 358 (4) ◽  
pp. 463-468
Author(s):  
Igor Pak ◽  
Greta Panova

2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Laura Colmenarejo

International audience We compute the generating function of some families of reduced Kronecker coefficients. We give a combi- natorial interpretation for these coefficients in terms of plane partitions. This unexpected relation allows us to check that the saturation hypothesis holds for the reduced Kronecker coefficients of our families. We also compute the quasipolynomial that govern these families, specifying the degree and period. Moving to the setting of Kronecker co- efficients, these results imply some observations related to the rate of growth experienced by the families of Kronecker coefficients associated to the reduced Kronecker coefficients already studied.


Sign in / Sign up

Export Citation Format

Share Document