specht module
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 8 (33) ◽  
pp. 1024-1055
Author(s):  
C. Bessenrodt ◽  
C. Bowman ◽  
L. Sutton

This paper consists of two prongs. Firstly, we prove that any Specht module labelled by a 2-separated partition is semisimple and we completely determine its decomposition as a direct sum of graded simple modules. Secondly, we apply these results and other modular representation theoretic techniques on the study of Kronecker coefficients and hence verify Saxl’s conjecture for several large new families of partitions. In particular, we verify Saxl’s conjecture for all irreducible characters of S n \mathfrak {S}_n which are of 2-height zero.


2019 ◽  
Vol 26 (01) ◽  
pp. 161-180
Author(s):  
Christos A. Pallikaros

We obtain alternative explicit Specht filtrations for the induced and the restricted Specht modules in the Hecke algebra of the symmetric group (defined over the ring A = ℤ[q1/2, q−1/2], where q is an indeterminate) using C-bases for these modules. Moreover, we provide a link between a certain C-basis for the induced Specht module and the notion of pairs of partitions.


10.37236/6960 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Brendan Pawlowski

To each finite subset of $\mathbb{Z}^2$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture.However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we exhibit the appropriate diagram variety as a component in a degeneration of one of Knutson's interval positroid varieties (up to Grassmann duality). A priori, the cohomology classes of these interval positroid varieties are represented by affine Stanley symmetric functions. We give a different formula for these classes as ordinary Stanley symmetric functions, one with the advantage of being Schur-positive and compatible with inclusions between Grassmannians.


2018 ◽  
Vol 2020 (7) ◽  
pp. 2054-2113
Author(s):  
Saugata Basu ◽  
Cordian Riener

Abstract We consider symmetric (under the action of products of finite symmetric groups) real algebraic varieties and semi-algebraic sets, as well as symmetric complex varieties in affine and projective spaces, defined by polynomials of degrees bounded by a fixed constant d. We prove that if a Specht module, $\mathbb{S}^{\lambda }$, appears with positive multiplicity in the isotypic decomposition of the cohomology modules of such sets, then the rank of the partition $\lambda$ is bounded by O(d). This implies a polynomial (in the dimension of the ambient space) bound on the number of such modules. Furthermore, we prove a polynomial bound on the multiplicities of those that do appear with positive multiplicity in the isotypic decomposition of the abovementioned cohomology modules. We give some applications of our methods in proving lower bounds on the degrees of defining polynomials of certain symmetric semi-algebraic sets, as well as improved bounds on the Betti numbers of the images under projections of (not necessarily symmetric) bounded real algebraic sets, improving in certain situations prior results of Gabrielov, Vorobjov, and Zell.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Brendan Pawlowski

International audience To each finite subset of a discrete grid $\mathbb{N}×\mathbb{N}$ (a diagram), one can associate a subvariety of a complex Grassmannian (a diagram variety), and a representation of a symmetric group (a Specht module). Liu has conjectured that the cohomology class of a diagram variety is represented by the Frobenius characteristic of the corresponding Specht module. We give a counterexample to this conjecture.However, we show that for the diagram variety of a permutation diagram, Liu's conjectured cohomology class $\sigma$ is at least an upper bound on the actual class $\tau$, in the sense that $\sigma - \tau$ is a nonnegative linear combination of Schubert classes. To do this, we consider a degeneration of Coskun's rank varieties which contains the appropriate diagram variety as a component. Rank varieties are instances of Knutson-Lam-Speyer's positroid varieties, whose cohomology classes are represented by affine Stanley symmetric functions. We show that the cohomology class of a rank variety is in fact represented by an ordinary Stanley symmetric function. A chaque sous-ensemble fini de $\mathbb{N}×\mathbb{N}$ (un diagramme), on peut associer une sous-variété d’une grassmannienne complexe et une représentation d’un groupe symétrique (un module de Specht). Liu a conjecturé que la classe de cohomologie de la variété d’un diagramme est représentée par la caractéristique de Frobenius du module de Specht correspondant. Nous donnons un contre-exemple à cette conjecture.Cependant, nous montrons que dans le cas de la variété du diagramme de permutation, la classe de cohomologie conjecturée par Liu est au moins un majorant de la classe juste $\tau$ , c’est-à-dire que $\sigma - \tau$ est une combinaison linéaire non-négative des classes de Schubert. Pour ce faire, nous considérons une dégénérescence des variétés de rang de Coskun qui contient la variété appropriée d’un diagramme comme une composante irréductible. Les variétés de rang sont des exemples de variétés de positroïde, dont les classes de cohomologie sont représentées par des fonctions symétriques de Stanley affines. En effet, nous montrons que la classe de cohomologie d’une variété de rang est représentée par une fonction symétrique de Stanley ordinaire.


2012 ◽  
Vol 19 (spec01) ◽  
pp. 777-786 ◽  
Author(s):  
David J. Hemmer

For a Specht module Sλ for the symmetric group Σd, the cohomology H i(Σd,Sλ) is known only in degree i = 0. We give a combinatorial criterion equivalent to the nonvanishing of the degree i = 1 cohomology, valid in odd characteristic. Our condition generalizes James' solution in degree zero. We apply this combinatorial description to give some computations of Specht module cohomology, together with an explicit description of the corresponding modules. Finally, we suggest some general conjectures that might be particularly amenable to proof using this description.


2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Richard Ehrenborg ◽  
JiYoon Jung

International audience For each composition $\vec{c}$ we show that the order complex of the poset of pointed set partitions $Π ^• _{\vec{c}}$ is a wedge of $β\vec{c}$ spheres of the same dimensions, where $β\vec{c}$ is the number of permutations with descent composition ^$\vec{c}$. Furthermore, the action of the symmetric group on the top homology is isomorphic to the Specht module $S^B$ where $B$ is a border strip associated to the composition $\vec{c}$. We also study the filter of pointed set partitions generated by a knapsack integer partitions and show the analogous results on homotopy type and action on the top homology. Pour chaque composition $\vec{c}$ nous montrons que le complexe simplicial des chaînes de l'ensemble ordonné $Π ^• _{\vec{c}}$ des partitions pointées d'un ensemble est un bouquet de $β\vec{c}$ sphères de même dimension, où $β\vec{c}$ est le nombre de permutations ayant la composition de descentes $\vec{c}$. De plus, l'action du groupe symétrique sur le groupe d'homologie de degré maximum est isomorphe au module de Specht $S^B$ où $B$ est la bande frontalière associée à la composition $\vec{c}$. Nous étudions aussi le filtre des partitions pointées d'un ensemble, engendré par des partitions d'entiers de type "sac à dos'' et nous démontrons des résultats analogues pour le type d'homotopie et pour l'action sur le groupe d'homologie de degré maximum.


Sign in / Sign up

Export Citation Format

Share Document