mantle geochemistry
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 5)

H-INDEX

10
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Tim Lichtenberg ◽  
Dan J. Bower ◽  
Mark Hammond ◽  
Ryan Boukrouche ◽  
Shang-Min Tsai ◽  
...  

<p>The earliest atmospheres of rocky planets originate from extensive volatile release during one or more magma ocean epochs that occur during primary and late-stage assembly of the planet (1). These epochs represent the most extreme cycling of volatiles between the interior and atmosphere in the history of a planet, and establish the initial distribution of the major volatile elements (C, H, N, O, S) between different chemical reservoirs that subsequently evolve via geological cycles. Crucially, the erosion or recycling of primary atmospheres bear upon the nature of the long-lived secondary atmospheres that will be probed with current and future observing facilities (2). Furthermore, the chemical speciation of the atmosphere arising from magma ocean processes can potentially be probed with present-day observations of tidally-locked rocky super-Earths (3). The speciation in turn strongly influences the climatic history of rocky planets, for instance the occurrence rate of planets that are locked in long-term runaway greenhouse states (4). We will present an integrated framework to model the build-up of the earliest atmospheres from magma ocean outgassing using a coupled model of mantle dynamics and atmospheric evolution. We consider the diversity of atmospheres that can arise for a range of initial planetary bulk compositions, and show how even small variations in volatile abundances can result in dramatically different atmospheric compositions and affect earliest mantle geochemistry and atmospheric speciation relevant for surficial prebiotic chemical environments (5). Only through the lense of coupled evolutionary models of terrestrial interiors and atmospheres can we begin to deconvolve the imprint of formation from that of evolution, with consequences for how we interpret the diversity revealed by astrophysical observables, and their relation to the earliest planetary conditions of our home world.</p> <div class=""><em>References</em></div> <ol> <li>Bower, D. J., Kitzmann, D., Wolf, A. S., et al. (2019). Astron. Astrophys. 631, A103.</li> <li>Bonati, I., Lichtenberg, T., Bower, D. J., et al. (2019). Astron. Astrophys. 621, A125.</li> <li>Kreidberg, L., Koll, D. D., Morley, C., et al. (2019). Nature 573, 87-90.</li> <li>Hamano, K., Abe, Y., Genda, H. (2013). Nature 497, 607-610.</li> <li>Sasselov, D. D., Grotzinger, J. P., Sutherland, J. D. (2020). Sci. Adv. 6, eaax3419.</li> </ol>


Lithos ◽  
2018 ◽  
Vol 310-311 ◽  
pp. 409-421 ◽  
Author(s):  
Mathieu Chassé ◽  
William L. Griffin ◽  
Olivier Alard ◽  
Suzanne Y. O’Reilly ◽  
Georges Calas

2017 ◽  
Vol 60 (11) ◽  
pp. 1976-2000 ◽  
Author(s):  
ShiChun Huang ◽  
YongFei Zheng

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
T. L. Barry ◽  
J. H. Davies ◽  
M. Wolstencroft ◽  
I. L. Millar ◽  
Z. Zhao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document