tectonic plates
Recently Published Documents


TOTAL DOCUMENTS

335
(FIVE YEARS 158)

H-INDEX

22
(FIVE YEARS 4)

Sensors ◽  
2022 ◽  
Vol 22 (1) ◽  
pp. 350
Author(s):  
Lavinia Tunini ◽  
David Zuliani ◽  
Andrea Magrin

The geodetic monitoring of the continuous crustal deformation in a particular region has traditionally been the prerogative of the scientific communities capable of affording high-price geodetic-class instruments to track the tiny movements of tectonic plates without losing precision. However, GNSS technology has been continuously and rapidly growing, and in the last years, new cost-efficient instruments have entered the mass market, gaining the attention of the scientific community for potentially being high-performing alternative solutions. In this study, we match in parallel a dual-frequency low-cost receiver with two high-price geodetic instruments, all connected to the same geodetic antenna. We select North-East Italy as testing area, and we process the data together with the observations coming from a network of GNSS permanent stations operating in this region. We show that mm-order precision can be achieved by cost-effective GNSS receivers, while the results in terms of time series are largely comparable to those obtained using high-price geodetic receivers.


2022 ◽  
Vol 955 (1) ◽  
pp. 012017
Author(s):  
J Kautsary

Abstract Indonesia is located at the meeting point of three tectonic plates, making it at-risk to geological disasters such as volcanic eruptions and earthquakes. Earthquake disaster can cause a variety of crucial dangers, such as earthquakes, landslides, liquefaction, tsunamis, and other natural disasters, as one took place in Palu City in 2018. This study aims to identify key parameters that could increase Palu resilience in the face of calamity in the future. This study start with a literature review to determine the concept, parameters, and variables of resilience Palu City against disasters. These parameters and variables were then compared to the current condition. The findings of the literature review generated four main parameters for disaster-resilience cities: disaster risk reduction (improvement of infrastructure design and multi disasters-based land use planning), community recovery, efficient program implementation, and monitoring-evaluation. Furthermore, the comparison of these four parameters to reconstruction activities reveals that Palu city’s post-disaster reconstruction has not fully resulted in efforts to achieve the concept of a disaster-resilience city. This is because post-disaster management efforts in Indonesia are in accordance with applicable regulations, emphasizing recovery rather than mitigation in the following catastrophic events.


GEODYNAMICS ◽  
2021 ◽  
Vol 2(31)2021 (2(31)) ◽  
pp. 53-65
Author(s):  
Оleksii Bartaschuk ◽  
◽  
Vasyl Suyarko ◽  

The article studies the system organization of inversion tectonic deformations of the Dnieper-Donetsk Basin which covered the territory of the Western Donetsk Graben. The research uses the kinematic and structural-paragenetic analysis of inversion structural transformation of the folded floors of the sedimentary cover of the Graben. The original model of tectonic inversion of the Dnieper-Donets Basin was completed from the previous models. The tectonic inversion of the Dnieper-Donets Paleorift rift-like structures began at the late Hercynian stage in the geodynamic environment of the territory of the Eastern European Platform general collision. Tectonophysical analysis shows that the inversion folding was formed by the mechanism of sedimentary horizons longitudinal bending in the environment of the interference of the intraplate submeridional collision compression and the regional strike-slip stress field. At the Mesozoic-Cenozoic stage, tectonic inversion continued in the field of right-hand strike-slip deformations with a variable compressive component. This caused the formation of folded covers of tectonic plates and scales in the uplift-thrust mode. They, Hercynian neo-autochthonous formations and further the weakly located syneclise autochthon of the South-east of the Basin. The pressure of the "tectonic stamp" geoblock of the Donetsk Foldbelt contributed to the formationof the Segment body of geomass Tectonic Wedging. It was diagnosed with a structural orocline of transverse extension of the sliding type. Large linear throw-folded zones were formed within geodynamic bands of injection and displacement of geomass along the front of the orocline. The tectonic compression fan, characteristic of geodynamic compression zones, was formed in the foreland of the orocline, on the ends of the main thrusts. They served as “tectonic rails”of the allochthon invasion within the rift-like structure. There are the transverse zones of tectonic sutures formed on the roots of the folding covers of the Hercynian neo-autochthon thrusting, which are located in the hinterland of the orocline in the Foldbelt Western slope. The study completed an original kinematic model of tectonic inversion of the transition zone between the Dnieper-Donets Basin and Donets Foldbelt. According to the model, the pressure of the “tectonic stamp” geoblock initiated the invasion of the Segment of Tectonic Wedging which consists of the intensively dislocated allochthonous geomass. The Segment destroyed the rift-like structure and formed the Western Donetsk Cover-Folded Region in the South-eastern part of the Basin. The system organization model of inversion complications of the rift-like structure in the territory of the Western Donetsk Graben will allow to improve the regional geological schemes of tectonic oil and gas zoning.


Author(s):  
D.V. Metelkin ◽  
V.V. Abashev ◽  
V.A. Vernikovsky ◽  
N.E. Mikhaltsov

Abstract —We report new paleomagnetic and geochronological data for rocks of the Franz Josef Land archipelago and generalize available information about the paleomagnetism of the Barents Sea continental margin as applied to the issues of the Mesozoic Arctic tectonics. Specifically, the obtained age estimates are indicative of a brief episode of mantle plume magmatism at the Barremian–Aptian boundary (Early Cretaceous). The paleomagnetic data shows that intraplate magmatism formations in the High Arctic, including the Franz Josef Land traps, are nothing else than a trace of the Iceland plume on the migrating tectonic plates of the region. Thus, the Iceland plume was geographically stationary for at least the last 125 Myr. Our paleotectonic reconstructions suggest a direct connection of the intraplate strike-slip systems of the Eurasian continent with the configuration and subsequent evolution mode of Mesozoic marginal basins and spreading axes during the initial opening stage of the Arctic Ocean.


2021 ◽  
pp. 9-12
Author(s):  
Rachel Gibson

Guatemala and Nicaragua are countries located in Central America along with Belize, El Salvador, Honduras, Costa Rica, and Panama. A thin strip of land in the southernmost region of the continent North America, the isthmus was formed approximately three million years ago by collisions of the earth’s tectonic plates, an instability that contributes to the consistent threat of earthquakes and volcanic eruptions. Before colonization began in the 1500s, the region was inhabited by Indigenous groups, most notably the Maya....


2021 ◽  
Vol 2 (6) ◽  
pp. 36-42
Author(s):  
B. Tutberidze ◽  
M. Akhalkatsishvili

These Erusheti Plateau is an integral part of the volcanic highland of Southern Georgia. It is located northern part of the Lesser Caucasus in the convergence zone of the Afro-Arabian and Eurasian lithosphere tectonic plates. The territory is almost totally covered with strong volcanic and volcano-sedimentary formations of Goderdzi suite with different lithologies and facies. The suite is formed in the Late Miocene - Early Pliocene Age, about from 11.8±4 to 13.6±3.1 Ma. Erusheti Plateau overall, are not characterized by many centers of eruption; Here we discuss eruption histories of the large polygenic volcanic massive Dokhuz-Puar and a monogenic volcano Datvistskaro are clearly seen among the volcanogenic structures of Erusheti Plateau. The eruption products of Dokhkuz-Puar volcano are dacitic-containing tuff-breccias and lava flows. The activity of Datvistskaro volcano was expressed only by the eruption of pyroclastic deposits containing andesite basalts. The main constituent minerals are: plagi­oclase and hornblende mega-crystals in dacites; augite-olivine and base plagioclase – in andesite basalts. With their geochemical properties, all the rocks of the rocks of a calc-alkali series. Dacites and andesite-basalts do not feed from a common magmatic source and consequently, are not the product of differentiation of the same magma. The work is the first to describe the natural amazing natural geoforms developed in pyroclastolites of Datvistskaro volcano: gigantic stone columns, mushroom-shaped stone caps and stone lances.Should be noted that no detailed mine­ralogical-petrological study of the rocks common in the study area has done to date. The main purpose of the given work is filling this gap.


2021 ◽  
Author(s):  
José Alberto Padrón-navarta ◽  
Vicente López Sánchez-Vizcaíno ◽  
Manuel Menzel ◽  
María Teresa Gómez-Pugnaire ◽  
Carlos Garrido

Abstract The Earth's mantle is oxygen-breathing through the ¬sink of oxidised tectonic plates at convergent margins. Ocean floor serpentinisation increases the bulk oxidation state of iron relative to dry oceanic mantle and results in a variable intake of other redox-sensitive elements such as sulphur. The reversibility of seafloor oxidation in subduction zones during high-pressure dehydration of serpentinite (“deserpentinisation”) at subarc depths and the capacity of the resulting fluids to oxidise the mantle source of arc basalts are highly contested. Thermodynamic modelling, experiments, and metaperidotite study in exhumed high-pressure terrains result in differing estimates of the redox state of deserpentinisation fluids, ranging from low to highly oxidant. Here we show that although intrinsic deserpentinisation fluids are highly oxidant, the infiltration of small fractions of external fluids equilibrated with metasedimentary rocks strongly modulates their redox state and oxidation-reduction capacity explaining the observed discrepancies in their redox state. Infiltration of fluids equilibrated with graphite-bearing sediments reduces the oxidant, intrinsic deserpentinisation fluids to oxygen fugacities similar to those observed in most graphite-furnace experiments and natural metaperidotites. However, infiltration of CO2-bearing fluids equilibrated with modern GLOSS generates sulphate-rich, highly oxidising deserpentinisation fluids. We show that such GLOSS-infiltrated deserpentinisation fluids can effectively oxidise the mantle wedge of cold to hot subduction zones potentially accounting for the presumed oxidised nature of the source of arc basalts.


2021 ◽  
Author(s):  
Eric Debayle ◽  
Thomas Bodin ◽  
Stéphanie Durand ◽  
Yanick Ricard
Keyword(s):  

2021 ◽  
Vol 936 (1) ◽  
pp. 012013
Author(s):  
Haryo Dwito Armono ◽  
Adryanto Rama Putra ◽  
Wahyudi

Abstract Indonesia is an archipelago located at the meeting point of 3 tectonic plates which constantly collide over time, the energy due to the collision will accumulate and be able to cause large earthquakes that can generate tsunamis. The island of Java is in the subduction zone of these plates, which causes the southern part of Java to have a high earthquake potential. On April 10, 2021, an earthquake measuring M 6.1 occurred in the south of Blitar and Malang. This earthquake was felt by most of the people of East Java, If the earthquake is large enough, it can cause a tsunami on the southern coast of East Java. Therefore, modeling was carried out using the FLOW module of Delft3D software while using earthquake parameters with a strength of M 9.1 which is the worst possible scenario on the southern coast of East Java. The results of this study indicate the fastest tsunami arrival time is 21 minutes, the highest maximum tsunami height is 20 meters, the highest run-up reaches 17,5 meters, and the furthest inundation reaches 765 meters along the southern coast of Blitar and Malang Regency.


2021 ◽  
Vol 13 (23) ◽  
pp. 4872
Author(s):  
Kamil Maciuk ◽  
Michal Apollo ◽  
Anita Kukulska-Kozieł ◽  
Paulina Lewińska

The Earth’s surface is under permanent alteration with the area of some nations growing or shrinking due to natural or man-made processes, for example sea level change. Here, based on the NUVEL 1A model, we forecast (in 10, 25, and 50 years) the changes in area for countries that are located on the border of the major tectonic plates. In the analysis we identify countries that are projected to gain or lose land due to the tectonic plate movement only. Over the next 50 years, the global balance of area gains (0.4 km2) and losses (12.7 km2) is negative. Thus, due to the movements of lithospheric plates, the land surface of the Earth will decrease by 12 km2 in 50 years. Overall, the changes are not that spectacular, as in the case of changes in sea/water levels, but in some smaller countries, projected losses exceed a few thousand square metres a year, e.g., in Nepal the losses exceed 10,000 m2 year−1. Methodologically, this paper finds itself between metric analysis and essay, trying to provoke useful academic discussion and incite educators’ interests to illustrate to students the tectonic movement and its force. Limitations of the used model have been discussed in the methodology section.


Sign in / Sign up

Export Citation Format

Share Document