quantum critical points
Recently Published Documents


TOTAL DOCUMENTS

189
(FIVE YEARS 32)

H-INDEX

36
(FIVE YEARS 3)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Sergio Caprara ◽  
Carlo Di Castro ◽  
Giovanni Mirarchi ◽  
Götz Seibold ◽  
Marco Grilli

AbstractAnomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces a strange metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals.


2021 ◽  
Author(s):  
TianCheng Yi ◽  
Richard Scalettar ◽  
Rubem Mondaini

Abstract Simulating models for quantum correlated matter unveils the inherent limitations of deterministic classical computations. In particular, in the case of quantum Monte Carlo methods, this is manifested by the emergence of negative weight configurations in the sampling, that is, the sign problem (SP). There have been several recent calculations which exploit the SP to locate underlying critical behavior. Here, utilizing a metric that quantifies phase-space ergodicity in such sampling, the Hamming distance, we suggest a significant advance on these ideas to extract the location of quantum critical points in various fermionic models, in spite of the presence of a severe SP. Combined with other methods, exact diagonalization in our case, it elucidates both the nature of the different phases as well as their location, as we demonstrate explicitly for the honeycomb and triangular Hubbard models, in both their U(1) and SU(2) forms. Our approach charts a path to circumvent inherent limitations imposed by the SP, allowing the exploration of the phase diagram of a variety of fermionic quantum models hitherto considered to be impractical via quantum Monte Carlo simulations.


2021 ◽  
Vol 11 (3) ◽  
Author(s):  
Daniel Areán ◽  
Richard A. Davison ◽  
Blaise Goutéraux ◽  
Kenta Suzuki

2021 ◽  
Author(s):  
Marco Grilli ◽  
Sergio Caprara ◽  
Carlo Di Castro ◽  
Giovanni Mirarchi ◽  
Goetz Seibold

Abstract Anomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces an anomalous metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals


2021 ◽  
Vol 18 (7) ◽  
pp. 075202
Author(s):  
Cheng-Cheng Liu ◽  
Shen-Chuan Cen ◽  
Zi-Li Liu ◽  
Jia-Dong Shi ◽  
Zhi-Yong Ding ◽  
...  

2021 ◽  
Vol 103 (10) ◽  
Author(s):  
Carlos M. Duque ◽  
Hong-Ye Hu ◽  
Yi-Zhuang You ◽  
Vedika Khemani ◽  
Ruben Verresen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document