magnetic impurities
Recently Published Documents


TOTAL DOCUMENTS

861
(FIVE YEARS 76)

H-INDEX

51
(FIVE YEARS 3)

2022 ◽  
Vol 32 (1) ◽  
Author(s):  
Ming-Qiang Ren ◽  
Shu-Ze Wang ◽  
Sha Han ◽  
Can-Li Song ◽  
Xu-Cun Ma ◽  
...  

AbstractThe successful preparation of superconducting alkali fulleride (AxC60, A = K, Rb, Cs) films using state-of-the-art molecular beam epitaxy overcomes the disadvantages of the air-sensitivity and phase separation in bulk AxC60, enabling for the first time a direct investigation of the superconductivity in alkali fullerides on the molecular scale. In this paper, we briefly review recent cryogenic scanning tunneling microscopy results of the structural, electronic, and superconducting properties of the fcc AxC60 films grown on graphitized SiC substrates. Robust s-wave superconductivity is revealed against the pseudogap, electronic correlation, non-magnetic impurities, and merohedral disorder. By controlling the alkali-metal species, film thickness, and electron doping, we systematically tune the C60x− orientational orderings and superconductivity in AxC60 films and then complete a unified phase diagram of superconducting gap size vs electronic correlation and doping. These investigations are conclusive and elucidated that the s-wave superconductivity retains in alkali fullerides despite of the electronic correlation and presence of pseudogap.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. M. Shikin ◽  
A. A. Rybkina ◽  
D. A. Estyunin ◽  
I. I. Klimovskikh ◽  
A. G. Rybkin ◽  
...  

AbstractPolar Rashba-type semiconductor BiTeI doped with magnetic elements constitutes one of the most promising platforms for the future development of spintronics and quantum computing thanks to the combination of strong spin-orbit coupling and internal ferromagnetic ordering. The latter originates from magnetic impurities and is able to open an energy gap at the Kramers point (KP gap) of the Rashba bands. In the current work using angle-resolved photoemission spectroscopy (ARPES) we show that the KP gap depends non-monotonically on the doping level in case of V-doped BiTeI. We observe that the gap increases with V concentration until it reaches 3% and then starts to mitigate. Moreover, we find that the saturation magnetisation of samples under applied magnetic field studied by superconducting quantum interference device (SQUID) magnetometer has a similar behaviour with the doping level. Theoretical analysis shows that the non-monotonic behavior can be explained by the increase of antiferromagnetic coupled atoms of magnetic impurity above a certain doping level. This leads to the reduction of the total magnetic moment in the domains and thus to the mitigation of the KP gap as observed in the experiment. These findings provide further insight in the creation of internal magnetic ordering and consequent KP gap opening in magnetically-doped Rashba-type semiconductors.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012198
Author(s):  
R A Niyazov ◽  
D N Aristov ◽  
V Yu Kachorovskii

Abstract We discuss spin-dependent transport via tunneling Aharonov-Bohm interferometer formed by helical edge states tunnel-coupled to helical leads. We focus on the experimentally relevant high-temperature case as compared to the level spacing and obtain the full 4×4 matrix of transmission coefficients in the presence of magnetic impurities. We show that spin conserving and spin-flip transmission coefficients of the setup can be effectively tuned by the magnetic flux. These features are attractive due to possible applications for spintronics, magnetic field detection, and quantum computing.


2021 ◽  
pp. 1-11
Author(s):  
Lynette Keeney ◽  
Louise Colfer ◽  
Michael Schmidt

Abstract Sub-10 nm ferroelectric and multiferroic materials are attracting increased scientific and technological interest, owing to their exciting physical phenomena and prospects in miniaturized electronic devices, neuromorphic computing, and ultra-compact data storage. The Bi6Ti2.9Fe1.5Mn0.6O18 (B6TFMO) Aurivillius system is a rare example of a multiferroic that operates at room temperature. Since the formation of magnetic impurity phases can complicate attempts to measure ferromagnetic signal intrinsic to the B6TFMO multiferroic phase and thus limits its use, herein we minimize this by utilizing relatively large (49%) bismuth excess to counteract its volatility during sub-10 nm growth. X-ray diffraction, electron microscopy, and atomic force microscopy show sample crystallinity and purity are substantially improved on increasing bismuth excess from 5 to 49%, with the volume fraction of surface impurities decreasing from 2.95–3.97 vol% down to 0.02–0.31 vol%. Piezoresponse force microscopy reveals 8 nm B6TFMO films are ferroelectric, with an isotropic random distribution of stable in-plane domains and weaker out-of-plane piezoresponse. By reducing the volume fraction of magnetic impurities, this work demonstrates the recent progress in the optimization of ultra-thin B6TFMO for future multiferroic technologies. We show how the orientation of the ferroelectric polarization can be switched in 8 nm B6TFMO and arrays can be “written” and “read” to express states permitting anti-parallel information storage.


2021 ◽  
Author(s):  
◽  
Sebastian Sambale

<p>This thesis is motivated by the large variety of high-temperature superconductors that contain iron in the superconducting layer. This number has grown rapidly since the discovery in 2008 of the iron-pnictides (and chalcogenides), where iron and arsenic form the superconducting layer. Also of interest are the iron-cuprate hybrid materials, where one out of three copper atoms is replaced by iron. The aim is to understand the superconducting, magnetic and electronic properties of these materials in respect to their iron content. This thesis describes some of these properties for the iron-pnictide compounds of CeFeAsO₁₋xFx and AFe₂As₂ (A=Ba, Sr), and for the ironcuprate hybrids of FeSr₂YCu₂O₆₊y and FeSr₂Y₂₋xCexCu₂O₁₀₋y.  Here it has been found that CeFeAsO₁₋xFx follows a 3D fluctuation conductivity above the superconducting transition and the thermal activation energy is correlated to the critical current density within a two fluid-flux creep model below the superconducting transition. NMR measurements show that there is considerable charge disorder within the superconducting doping region. The AFe₂As₂ show a positive magnetoresistance, which could be interpreted through three-carrier transport. Superconducting samples of SrFe₂As₂ display a large enhancement in the magnetoresistance below the superconducting transition up to 1600 %, which is due to three-carrier transport through metallic and superconducting regions in an inhomogeneous state.  The superconducting properties of the iron-cuprate FeSr₂YCu₂O₆₊y in respect to the location of iron was studied under the influence of electron and hole doping and with additional magnetic impurities. FeSr₂Y₂₋xCexCu₂O₁₀₋y shows a disorder induced spin-glass state and strong localization depending on the doping.</p>


2021 ◽  
Author(s):  
◽  
Sebastian Sambale

<p>This thesis is motivated by the large variety of high-temperature superconductors that contain iron in the superconducting layer. This number has grown rapidly since the discovery in 2008 of the iron-pnictides (and chalcogenides), where iron and arsenic form the superconducting layer. Also of interest are the iron-cuprate hybrid materials, where one out of three copper atoms is replaced by iron. The aim is to understand the superconducting, magnetic and electronic properties of these materials in respect to their iron content. This thesis describes some of these properties for the iron-pnictide compounds of CeFeAsO₁₋xFx and AFe₂As₂ (A=Ba, Sr), and for the ironcuprate hybrids of FeSr₂YCu₂O₆₊y and FeSr₂Y₂₋xCexCu₂O₁₀₋y.  Here it has been found that CeFeAsO₁₋xFx follows a 3D fluctuation conductivity above the superconducting transition and the thermal activation energy is correlated to the critical current density within a two fluid-flux creep model below the superconducting transition. NMR measurements show that there is considerable charge disorder within the superconducting doping region. The AFe₂As₂ show a positive magnetoresistance, which could be interpreted through three-carrier transport. Superconducting samples of SrFe₂As₂ display a large enhancement in the magnetoresistance below the superconducting transition up to 1600 %, which is due to three-carrier transport through metallic and superconducting regions in an inhomogeneous state.  The superconducting properties of the iron-cuprate FeSr₂YCu₂O₆₊y in respect to the location of iron was studied under the influence of electron and hole doping and with additional magnetic impurities. FeSr₂Y₂₋xCexCu₂O₁₀₋y shows a disorder induced spin-glass state and strong localization depending on the doping.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mir Vahid Hosseini ◽  
Mehdi Askari

AbstractWe theoretically demonstrate non-Hermitian indirect interaction between two magnetic impurities placed at the interface between a 3D topological insulator and a ferromagnetic metal. The coupling of topological insulator and the ferromagnet introduces not only Zeeman exchange field on the surface states but also broadening to transfer the charge and spin between the surface states of the topological insulator and the metallic states of the ferromagnet. While the former provides bandgap at the charge neutrality point, the latter causes non-Hermiticity. Using the Green’s function method, we calculate the range functions of magnetic impurity interactions. We show that the charge decay rate provides a coupling between evanescent modes near the bandgap and traveling modes near the band edge. However, the spin decay rate induces a stronger coupling than the charge decay rate so that higher energy traveling modes can be coupled to lower energy evanescent ones. This results in a non-monotonic behavior of the range functions in terms of distance and decay rates in the subgap regime. In the over gap regime, depending on the type of decay rate and on the distance, the amplitude of spatial oscillations would be damped or promoted.


2021 ◽  
Vol 104 (19) ◽  
Author(s):  
Oleg M. Yevtushenko ◽  
Vladimir I. Yudson
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document