superconducting cuprates
Recently Published Documents


TOTAL DOCUMENTS

343
(FIVE YEARS 32)

H-INDEX

34
(FIVE YEARS 5)

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Sergio Caprara ◽  
Carlo Di Castro ◽  
Giovanni Mirarchi ◽  
Götz Seibold ◽  
Marco Grilli

AbstractAnomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces a strange metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals.


2021 ◽  
Vol 6 (4) ◽  
pp. 50
Author(s):  
Linda Sederholm ◽  
Steven D. Conradson ◽  
Theodore H. Geballe ◽  
Chang-Qing Jin ◽  
Andrea Gauzzi ◽  
...  

Within the cuprate constellation, one fixed star has been the superconducting dome in the quantum phase diagram of transition temperature vs. the excess charge on the Cu in the CuO2-planes, p, resulting from O-doping or cation substitution. However, a more extensive search of the literature shows that the loss of the superconductivity in favor of a normal Fermi liquid on the overdoped side should not be assumed. Many experimental results from cuprates prepared by high-pressure oxygenation show Tc converging to a fixed value or continuing to slowly increase past the upper limit of the dome of p = 0.26–0.27, up to the maximum amounts of excess oxygen corresponding to p values of 0.3 to > 0.6. These reports have been met with disinterest or disregard. Our review shows that dome-breaking trends for Tc are, in fact, the result of careful, accurate experimental work on a large number of compounds. This behavior most likely mandates a revision of the theoretical basis for high-temperature superconductivity. That excess O atoms located in specific, metastable sites in the crystal, attainable only with extreme O chemical activity under HPO conditions, cause such a radical extension of the superconductivity points to a much more substantial role for the lattice in terms of internal chemistry and bonding.


2021 ◽  
Author(s):  
Philippe Bourges ◽  
Dalila Bounoua ◽  
Yvan Sidis ◽  
Toshinao Loew ◽  
Bourdarot Bourdarot ◽  
...  

Abstract Despite decades of intense researches, the enigmatic pseudo-gap (PG) phase of superconducting cuprates remains an unsolved mystery. In the last 15 years, various symmetry breakings in the PG state have been discovered, spanning an intra-unit cell (IUC) magnetism, preserving the lattice translational (LT) symmetry but breaking time-reversal symmetry and parity, and an additional incipient charge density wave breaking the LT symmetry upon cooling. However, none of these states can (alone) account for the partial gapping of the Fermi surface. Here we report a hidden LT-breaking magnetism which is crucial for elucidating the PG puzzle. Our polarized neutron diffraction measurements reveal magnetic correlations, in two different underdoped YBa2Cu3O6.6 single crystals, that settle at the PG onset temperature with i) a planar propagation wave vector (π, 0) ≡ (0, π), yielding a doubling or quadrupling of the magnetic unit cell and ii) magnetic moments mainly pointing perpendicular to the CuO2 layers. The LT-breaking magnetism is at short range suggesting the formation of clusters of 5-6 unit cells that, together with the previously reported IUC magnetism, yields a hidden magnetic texture of the CuO2 unit cells hosting loop currents.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shaozhi Li ◽  
Alberto Nocera ◽  
Umesh Kumar ◽  
Steven Johnston

AbstractAlthough many experiments imply that oxygen orbitals play an essential role in the high-temperature superconducting cuprates, their precise role in collective spin and charge excitations and superconductivity is not yet fully understood. Here, we study the doping-dependent dynamical spin and charge structure factors of single and multi-orbital (pd) models for doped one-dimensional corner-shared spin-chain cuprates using several numerically exact methods. In doing so, we determine the orbital composition of the collective spin and charge excitations of cuprates, with important implications for our understanding of these materials. For example, we observe a particle-hole asymmetry in the orbital-resolved charge excitations, which is directly relevant to resonant inelastic x-ray scattering experiments and not captured by the single-band Hubbard model. Our results imply that one must explicitly include the oxygen degrees of freedom in order to fully understand some experimental observations on cuprate materials.


2021 ◽  
Author(s):  
Marco Grilli ◽  
Sergio Caprara ◽  
Carlo Di Castro ◽  
Giovanni Mirarchi ◽  
Goetz Seibold

Abstract Anomalous metallic properties are often observed in the proximity of quantum critical points, with violation of the Fermi Liquid paradigm. We propose a scenario where, near the quantum critical point, dynamical fluctuations of the order parameter with finite correlation length mediate a nearly isotropic scattering among the quasiparticles over the entire Fermi surface. This scattering produces an anomalous metallic behavior, which is extended to the lowest temperatures by an increase of the damping of the fluctuations. We phenomenologically identify one single parameter ruling this increasing damping when the temperature decreases, accounting for both the linear-in-temperature resistivity and the seemingly divergent specific heat observed, e.g., in high-temperature superconducting cuprates and some heavy-fermion metals


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Peizhi Mai ◽  
Giovanni Balduzzi ◽  
Steven Johnston ◽  
Thomas A. Maier

AbstractThe nature of the effective interaction responsible for pairing in the high-temperature superconducting cuprates remains unsettled. This question has been studied extensively using the simplified single-band Hubbard model, which does not explicitly consider the orbital degrees of freedom of the relevant CuO2 planes. Here, we use a dynamical cluster quantum Monte Carlo approximation to study the orbital structure of the pairing interaction in the three-band Hubbard model, which treats the orbital degrees of freedom explicitly. We find that the interaction predominately acts between neighboring copper orbitals, but with significant additional weight appearing on the surrounding bonding molecular oxygen orbitals. By explicitly comparing these results to those from the simpler single-band Hubbard model, our study provides strong support for the single-band framework for describing superconductivity in the cuprates.


Sign in / Sign up

Export Citation Format

Share Document