noise element
Recently Published Documents


TOTAL DOCUMENTS

6
(FIVE YEARS 2)

H-INDEX

3
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ibrahim A. Aljamaan ◽  
Mujahed M. Al-Dhaifallah ◽  
David T. Westwick

A common process control application is the cascaded two-tank system, where the level is controlled in the second tank. A nonlinear system identification approach is presented in this work to predict the model structure parameters that minimize the difference between the estimated and measured data, using benchmark datasets. The general suggested structure consists of a static nonlinearity in cascade with a linear dynamic filter in addition to colored noise element. A one-step ahead prediction error-based technique is proposed to estimate the model. The model is identified using a separable least squares optimization, where only the parameters that appear nonlinearly in the output of the predictor are solved using a modified Levenberg–Marquardt iterative optimization approach, while the rest are fitted using simple least squares after each iteration. Finally, MATLAB simulation examples using benchmark data are included.


Information ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 67 ◽  
Author(s):  
Mohamed Hamidi ◽  
Aladine Chetouani ◽  
Mohamed El Haziti ◽  
Mohammed El Hassouni ◽  
Hocine Cherifi

Three-dimensional models have been extensively used in several applications including computer-aided design (CAD), video games, medical imaging due to the processing capability improvement of computers, and the development of network bandwidth. Therefore, the necessity of implementing 3D mesh watermarking schemes aiming to protect copyright has increased considerably. In this paper, a blind robust 3D mesh watermarking method based on mesh saliency and wavelet transform for copyright protection is proposed. The watermark is inserted by quantifying the wavelet coefficients using quantization index modulation (QIM) according to the mesh saliency of the 3D semiregular mesh. The synchronizing primitive is the distance between the mesh center and salient points in the descending order. The experimental results show the high imperceptibility of the proposed scheme while ensuring a good robustness against a wide range of attacks including smoothing, additive noise, element reordering, similarity transformations, etc.


1985 ◽  
Vol 7 ◽  
pp. 76-83 ◽  
Author(s):  
David A. Fisher ◽  
Niels Reeh ◽  
H.B. Clausen

Because of snow drifting, two time series of any variable derived from two adjacent ice cores will differ considerably. The size and statistical nature of this noise element is discussed for two kinds of measured substance. A theory is developed and compared to data from Greenland and Canadian Arctic ice cores. In case 1, the measured substance can diffuse and the seasonal cycle degrade with time and depth, e.g. δ(18O). In case 2, the measured substance cannot diffuse, e.g. microparticles. The case 2 time series contain drift noise proportional to that in the accumulation series. For accumulation series, the spectral power is concentrated at the high frequencies, i.e. is “blue”. Such noise can be easily reduced by taking relatively short time averages. The noise in the case 1 time series, however, starts out “blue” but quickly diffuses to have a “red” character with significant power at longer wavelengths, and many decades of such series must be averaged to reduce the noise level. Because the seasonal amplitude of any given variable is an important input to the drift noise and because the seasonal amplitudes of some variable types are latitude-dependent, some sites have inherently less drift noise than others.


1985 ◽  
Vol 7 ◽  
pp. 76-83 ◽  
Author(s):  
David A. Fisher ◽  
Niels Reeh ◽  
H.B. Clausen

Because of snow drifting, two time series of any variable derived from two adjacent ice cores will differ considerably. The size and statistical nature of this noise element is discussed for two kinds of measured substance. A theory is developed and compared to data from Greenland and Canadian Arctic ice cores. In case 1, the measured substance can diffuse and the seasonal cycle degrade with time and depth, e.g. δ(18O). In case 2, the measured substance cannot diffuse, e.g. microparticles. The case 2 time series contain drift noise proportional to that in the accumulation series. For accumulation series, the spectral power is concentrated at the high frequencies, i.e. is “blue”. Such noise can be easily reduced by taking relatively short time averages. The noise in the case 1 time series, however, starts out “blue” but quickly diffuses to have a “red” character with significant power at longer wavelengths, and many decades of such series must be averaged to reduce the noise level. Because the seasonal amplitude of any given variable is an important input to the drift noise and because the seasonal amplitudes of some variable types are latitude-dependent, some sites have inherently less drift noise than others.


Sign in / Sign up

Export Citation Format

Share Document