reflexive polytope
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2019 ◽  
Vol 113 (3) ◽  
pp. 265-272
Author(s):  
Takayuki Hibi ◽  
Akiyoshi Tsuchiya
Keyword(s):  

10.37236/7780 ◽  
2019 ◽  
Vol 26 (1) ◽  
Author(s):  
Gábor Hegedüs ◽  
Akihiro Higashitani ◽  
Alexander Kasprzyk

Recent work has focused on the roots $z\in\mathbb{C}$ of the Ehrhart polynomial of a lattice polytope $P$. The case when $\Re{z}=-1/2$ is of particular interest: these polytopes satisfy Golyshev's "canonical line hypothesis". We characterise such polytopes when $\mathrm{dim}(P)\leq 7$. We also consider the "half-strip condition", where all roots $z$ satisfy $-\mathrm{dim}(P)/2\leq\Re{z}\leq \mathrm{dim}(P)/2-1$, and show that this holds for any reflexive polytope with $\mathrm{dim}(P)\leq 5$. We give an example of a $10$-dimensional reflexive polytope which violates the half-strip condition, thus improving on an example by Ohsugi–Shibata in dimension $34$.


10.37236/2366 ◽  
2012 ◽  
Vol 19 (3) ◽  
Author(s):  
Alexander M. Kasprzyk ◽  
Benjamin Nill

We introduce reflexive polytopes of index $l$ as a natural generalisation of the notion of a reflexive polytope of index $1$. These $l$-reflexive polytopes also appear as dual pairs. In dimension two we show that they arise from reflexive polygons via a change of the underlying lattice. This allows us to efficiently classify all isomorphism classes of $l$-reflexive polygons up to index $200$. As another application, we show that any reflexive polygon of arbitrary index satisfies the famous "number $12$" property. This is a new, infinite class of lattice polygons possessing this property, and extends the previously known sixteen instances. The number $12$ property also holds more generally for $l$-reflexive non-convex or self-intersecting polygonal loops. We conclude by discussing higher-dimensional examples and open questions.


Sign in / Sign up

Export Citation Format

Share Document