mirror map
Recently Published Documents


TOTAL DOCUMENTS

37
(FIVE YEARS 7)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Marieke van Beest ◽  
Simone Giacomelli

Abstract We describe how the geometry of the Higgs branch of 5d superconformal field theories is transformed under movement along the extended Coulomb branch. Working directly with the (unitary) magnetic quiver, we demonstrate a correspondence between Fayet-Iliopoulos deformations in 3d and 5d mass deformations. When the Higgs branch has multiple cones, characterised by a collection of magnetic quivers, the mirror map is not globally well-defined, however we are able to utilize the correspondence to establish a local version of mirror symmetry. We give several detailed examples of deformations, including decouplings and weak-coupling limits, in (Dn, Dn) conformal matter theories, TN theory and its parent PN, for which we find new Lagrangian descriptions given by quiver gauge theories with fundamental and anti-symmetric matter.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
L. Borsten ◽  
M. J. Duff ◽  
S. Nagy

Abstract When compact manifolds X and Y are both even dimensional, their Euler characteristics obey the Künneth formula χ(X × Y) = χ(X)χ(Y). In terms of the Betti numbers bp(X), χ(X) = Σp(−1)pbp(X), implying that χ(X) = 0 when X is odd dimensional. We seek a linear combination of Betti numbers, called ρ, that obeys an analogous formula ρ(X × Y) = χ(X)ρ(Y) when Y is odd dimensional. The unique solution is ρ(Y) = − Σp(−1)ppbp(Y). Physical applications include: (1) ρ → (−1)mρ under a generalized mirror map in d = 2m + 1 dimensions, in analogy with χ → (−1)mχ in d = 2m; (2) ρ appears naturally in compactifications of M-theory. For example, the 4-dimensional Weyl anomaly for M-theory on X4× Y7 is given by χ(X4)ρ(Y7) = ρ(X4× Y7) and hence vanishes when Y7 is self-mirror. Since, in particular, ρ(Y × S1) = χ(Y), this is consistent with the corresponding anomaly for Type IIA on X4× Y6, given by χ(X4)χ(Y6) = χ(X4× Y6), which vanishes when Y6 is self-mirror; (3) In the partition function of p-form gauge fields, ρ appears in odd dimensions as χ does in even.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Jiakang Bao ◽  
Omar Foda ◽  
Yang-Hui He ◽  
Edward Hirst ◽  
James Read ◽  
...  

Abstract We show how to map Grothendieck’s dessins d’enfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $$ \mathcal{N} $$ N = 2 supersymmetric instanton partition functions and 2d Virasoro conformal blocks. We explicitly demonstrate the 6 trivalent dessins with 4 punctures on the sphere. We find that the parametrizations obtained from a dessin should be related by certain duality for gauge theories. Then we will discuss that some dessins could correspond to conformal blocks satisfying certain rules in different minimal models.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Sanefumi Moriyama

Abstract Motivated by understanding M2-branes, we propose to reformulate partition functions of M2-branes by quantum curves. Especially, we focus on the backgrounds of del Pezzo geometries, which enjoy Weyl group symmetries of exceptional algebras. We construct quantum curves explicitly and turn to the analysis of classical phase space areas and quantum mirror maps. We find that the group structure helps in clarifying previous subtleties, such as the shift of the chemical potential in the area and the identification of the overall factor of the spectral operator in the mirror map. We list the multiplicities characterizing the quantum mirror maps and find that the decoupling relation known for the BPS indices works for the mirror maps. As a result, with the group structure we can present explicitly the statement for the correspondence between spectral theories and topological strings on del Pezzo geometries.


2020 ◽  
Vol 53 (38) ◽  
pp. 385401
Author(s):  
Tomohiro Furukawa ◽  
Sanefumi Moriyama ◽  
Yuji Sugimoto
Keyword(s):  

2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Marco Bertolini
Keyword(s):  

2018 ◽  
Vol 2020 (23) ◽  
pp. 9471-9538
Author(s):  
Dan Popovici

Abstract We propose a new approach to the mirror symmetry conjecture in a form suitable to possibly non-Kähler compact complex manifolds whose canonical bundle is trivial. We apply our methods by proving that the Iwasawa manifold $X$, a well-known non-Kähler compact complex manifold of dimension $3$, is its own mirror dual to the extent that its Gauduchon cone, replacing the classical Kähler cone that is empty in this case, corresponds to what we call the local universal family of essential deformations of $X$. These are obtained by removing from the Kuranishi family the two “superfluous” dimensions of complex parallelisable deformations that have a similar geometry to that of the Iwasawa manifold. The remaining four dimensions are shown to have a clear geometric meaning including in terms of the degeneration at $E_2$ of the Frölicher spectral sequence. On the local moduli space of “essential” complex structures, we obtain a canonical Hodge decomposition of weight $3$ and a variation of Hodge structures, construct coordinates and Yukawa couplings while implicitly proving a local Torelli theorem. On the metric side of the mirror, we construct a variation of Hodge structures parametrised by a subset of the complexified Gauduchon cone of the Iwasawa manifold using the sGG property (which means that all the Gauduchon metrics are strongly Gauduchon) of all the small deformations of this manifold proved in earlier joint work of the author with L. Ugarte. Finally, we define a mirror map linking the two variations of Hodge structures and we highlight its properties.


2017 ◽  
Vol 29 (3) ◽  
pp. 825-860 ◽  
Author(s):  
Yunwen Lei ◽  
Ding-Xuan Zhou

We study the convergence of the online composite mirror descent algorithm, which involves a mirror map to reflect the geometry of the data and a convex objective function consisting of a loss and a regularizer possibly inducing sparsity. Our error analysis provides convergence rates in terms of properties of the strongly convex differentiable mirror map and the objective function. For a class of objective functions with Hölder continuous gradients, the convergence rates of the excess (regularized) risk under polynomially decaying step sizes have the order [Formula: see text] after [Formula: see text] iterates. Our results improve the existing error analysis for the online composite mirror descent algorithm by avoiding averaging and removing boundedness assumptions, and they sharpen the existing convergence rates of the last iterate for online gradient descent without any boundedness assumptions. Our methodology mainly depends on a novel error decomposition in terms of an excess Bregman distance, refined analysis of self-bounding properties of the objective function, and the resulting one-step progress bounds.


Sign in / Sign up

Export Citation Format

Share Document