stable marriage problem
Recently Published Documents


TOTAL DOCUMENTS

114
(FIVE YEARS 20)

H-INDEX

17
(FIVE YEARS 1)

Author(s):  
Yuri Faenza ◽  
Telikepalli Kavitha

Let [Formula: see text] be an instance of the stable marriage problem in which every vertex ranks its neighbors in a strict order of preference. A matching [Formula: see text] in [Formula: see text] is popular if [Formula: see text] does not lose a head-to-head election against any matching. Popular matchings generalize stable matchings. Unfortunately, when there are edge costs, to find or even approximate up to any factor a popular matching of minimum cost is NP-hard. Let [Formula: see text] be the cost of a min-cost popular matching. Our goal is to efficiently compute a matching of cost at most [Formula: see text] by paying the price of mildly relaxing popularity. Our main positive results are two bicriteria algorithms that find in polynomial time a “quasi-popular” matching of cost at most [Formula: see text]. Moreover, one of the algorithms finds a quasi-popular matching of cost at most that of a min-cost popular fractional matching, which could be much smaller than [Formula: see text]. Key to the other algorithm is a polynomial-size extended formulation for an integral polytope sandwiched between the popular and quasi-popular matching polytopes. We complement these results by showing that it is NP-hard to find a quasi-popular matching of minimum cost and that both the popular and quasi-popular matching polytopes have near-exponential extension complexity.


Author(s):  
Enrico Maria Fenoaltea ◽  
Izat B. Baybusinov ◽  
Jianyang Zhao ◽  
Lei Zhou ◽  
Yi-Cheng Zhang

2020 ◽  
Vol 20 (6) ◽  
pp. 911-925
Author(s):  
ESRA ERDEM ◽  
MÜGE FIDAN ◽  
DAVID MANLOVE ◽  
PATRICK PROSSER

AbstractThe Stable Roommates problem (SR) is characterized by the preferences of agents over other agents as roommates: each agent ranks all others in strict order of preference. A solution to SR is then a partition of the agents into pairs so that each pair shares a room, and there is no pair of agents that would block this matching (i.e., who prefers the other to their roommate in the matching). There are interesting variations of SR that are motivated by applications (e.g., the preference lists may be incomplete (SRI) and involve ties (SRTI)), and that try to find a more fair solution (e.g., Egalitarian SR). Unlike the Stable Marriage problem, every SR instance is not guaranteed to have a solution. For that reason, there are also variations of SR that try to find a good-enough solution (e.g., Almost SR). Most of these variations are NP-hard. We introduce a formal framework, called SRTI-ASP, utilizing the logic programming paradigm Answer Set Programming, that is provable and general enough to solve many of such variations of SR. Our empirical analysis shows that SRTI-ASP is also promising for applications.


Systems ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 17
Author(s):  
Anzhelika Voroshilova ◽  
Jeff Wafubwa

The simulation of population dynamics and social processes is of great interest in nonlinear systems. Recently, many scholars have paid attention to the possible applications of population dynamics models, such as the competitive Lotka–Volterra equation, in economic, demographic and social sciences. It was found that these models can describe some complex behavioral phenomena such as marital behavior, the stable marriage problem and other demographic processes, possessing chaotic dynamics under certain conditions. However, the introduction of external factors directly into the continuous system can influence its dynamic properties and requires a reformulation of the whole model. Nowadays most of the simulations are performed on digital computers. Thus, it is possible to use special numerical techniques and discrete effects to introduce additional features to the digital models of continuous systems. In this paper we propose a discrete model with controllable phase-space volume based on the competitive Lotka–Volterra equations. This model is obtained through the application of semi-implicit numerical methods with controllable symmetry to the continuous competitive Lotka–Volterra model. The proposed model provides almost linear control of the phase-space volume and, consequently, the quantitative characteristics of simulated behavior, by shifting the symmetry of the underlying finite-difference scheme. We explicitly show the possibility of introducing almost arbitrary law to control the phase-space volume and entropy of the system. The proposed approach is verified through bifurcation, time domain and phase-space volume analysis. Several possible applications of the developed model to the social and demographic problems’ simulation are discussed. The developed discrete model can be broadly used in modern behavioral, demographic and social studies.


Sign in / Sign up

Export Citation Format

Share Document