chromatin diminution
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 5)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 15 (4) ◽  
pp. 329-338
Author(s):  
Andrey Grishanin ◽  
Oksana Chinyakova

The experimental results show that at doses of 20 Gy and 100 Gy, the development of Cyclops kolensis Lilljeborg, 1901 (Copepoda, Cyclopoida) embryos ceases at the 16-cell stage, without affecting the course of chromatin diminution. A dose of 200 Gy terminated the process of chromatin diminution in some of the embryos. These results support the hypothesis that cytoplasmic factors in the egg play an important role in the process of chromatin diminution.


2021 ◽  
Vol 41 (3) ◽  
Author(s):  
Emilly Schutt ◽  
Maria Hołyńska ◽  
Grace A Wyngaard

Abstract Genome size is a fundamental property of organisms that impacts their molecular evolution and life histories. The hypothesis that somatic genome sizes in copepods in the order Cyclopoida are small and evolutionary constrained relative to those in the order Calanoida was proposed 15 years ago. Since then, the number of estimates has almost doubled and the taxon sampling has broadened. Here we add 14 new estimates from eight genera of freshwater cyclopoids that vary from 0.2 to 6.6 pg of DNA per nucleus in the soma; all except one are 2.0 pg DNA per nucleus or smaller. This new sample adds to the pattern of genome size in copepods and is remarkably similar to the distribution on which the original hypothesis was based, as well as those of subsequently published estimates. Embryonic chromatin diminution, during which large portions of DNA are excised from the presomatic cell lineage, is reported in Paracyclops affinis (G.O. Sars, 1863). This diminution results in a somatic genome that is one half the size of the germline genome. When the sizes of the germline genomes carried in presomatic cells of cyclopoid species that possess chromatin diminution are considered, the prediminuted germline genome sizes of cyclopoid embryos overlap with the distribution of calanoid somatic genome sizes, supporting the hypothesis that chromatin diminution has functioned as a mechanism to constrain somatic nuclear DNA content in cyclopoid copepods. Geographically based variation in genome size among populations is also reviewed.


2021 ◽  
Vol 55 (2) ◽  
pp. 107-116
Author(s):  
E. A. Kravets ◽  
S. H. Plohovskaya ◽  
I. I. Horyunova ◽  
A. I. Yemets ◽  
Ya. B. Blume

2020 ◽  
Vol 11 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Pablo Manuel Gonzalez de la Rosa ◽  
Marian Thomson ◽  
Urmi Trivedi ◽  
Alan Tracey ◽  
Sophie Tandonnet ◽  
...  

Abstract Eukaryotic chromosomes have phylogenetic persistence. In many taxa, each chromosome has a single functional centromere with essential roles in spindle attachment and segregation. Fusion and fission can generate chromosomes with no or multiple centromeres, leading to genome instability. Groups with holocentric chromosomes (where centromeric function is distributed along each chromosome) might be expected to show karyotypic instability. This is generally not the case, and in Caenorhabditis elegans, it has been proposed that the role of maintenance of a stable karyotype has been transferred to the meiotic pairing centers, which are found at one end of each chromosome. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60-Mb O. tipulae genome is resolved into six chromosomal molecules. We find the evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes, we identify seven ancestral chromosomal elements (Nigon elements) and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex chromosome-associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.


2020 ◽  
Author(s):  
Pablo Manuel Gonzalez de la Rosa ◽  
Marian Thomson ◽  
Urmi Trivedi ◽  
Alan Tracey ◽  
Sophie Tandonnet ◽  
...  

ABSTRACTEukaryotic chromosomes have phylogenetic persistence. In many taxa, the number of chromosomes is related to the number of centromeres. However, in some groups, such as rhabditid nematodes, centromeric function is distributed across multiple sites on each chromosome. These holocentric chromosomes might, a priori, be expected to be permissive of large-scale chromosomal rearrangement, as chromosomal fragments could still partition correctly and fusions would not generate lethal conflict between multiple centromeres. Here, we explore the phylogenetic stability of nematode chromosomes using a new telomere-to-telomere assembly of the rhabditine nematode Oscheius tipulae generated from nanopore long reads. The 60 Mb O. tipulae genome is resolved into six chromosomal molecules. We find evidence of specific chromatin diminution at all telomeres. Comparing this chromosomal O. tipulae assembly with chromosomal assemblies of diverse rhabditid nematodes we identify seven ancestral chromosomal elements (Nigon elements), and present a model for the evolution of nematode chromosomes through rearrangement and fusion of these elements. We identify frequent fusion events involving NigonX, the element associated with the rhabditid X chromosome, and thus sex-chromosome associated gene sets differ markedly between species. Despite the karyotypic stability, gene order within chromosomes defined by Nigon elements is not conserved. Our model for nematode chromosome evolution provides a platform for investigation of the tensions between local genome rearrangement and karyotypic evolution in generating extant genome architectures.


2018 ◽  
Vol 156 (3) ◽  
pp. 165-172 ◽  
Author(s):  
Andrey K. Grishanin ◽  
Maxim V. Zagoskin

Chromatin diminution (CD) is a phenomenon of programmed DNA elimination which takes place in early embryogenesis in some eukaryotes. The mechanism and biological role of CD remain largely unknown. During CD in the freshwater copepod Cyclops kolensis, the genome of cells of the somatic lineage is reorganized and reduced in size by more than 90% without affecting the genome of germline cells. Although the diploid chromosome number is unchanged, chromosome size is dramatically reduced by CD. The eliminated DNA consists primarily of repetitive sequences and localizes within granules during the elimination process. In this review, we provide an overview of CD in C. kolensis including both cytological and molecular studies.


Author(s):  
Adrian Streit ◽  
Richard E Davis
Keyword(s):  

2016 ◽  
Vol 52 (11) ◽  
pp. 1200-1203
Author(s):  
V. I. Teterina ◽  
Yu. A. Galimova ◽  
N. G. Sheveleva ◽  
L. V. Sukhanova ◽  
T. Yu. Mayor ◽  
...  
Keyword(s):  

Parasitology ◽  
2014 ◽  
Vol 141 (10) ◽  
pp. 1244-1254 ◽  
Author(s):  
ADRIAN STREIT

SUMMARYParasitic lifestyles evolved many times independently. Just within the phylum Nematoda animal parasitism must have arisen at least four times. Switching to a parasitic lifestyle is expected to lead to changes in various life history traits including reproductive strategies. Parasitic nematode worms of the genus Strongyloides represent an interesting example to study these processes because they are still capable of forming facultative free-living generations in between parasitic ones. The parasitic generation consists of females only, which reproduce parthenogenetically. The sex in the progeny of the parasitic worms is determined by environmental cues, which control a, presumably ancestral, XX/XO chromosomal sex determining system. In some species the X chromosome is fused with an autosome and one copy of the X-derived sequences is removed by sex-specific chromatin diminution in males. Here I propose a hypothesis for how today's Strongyloides sp. might have evolved from a sexual free-living ancestor through dauer larvae forming free-living and facultative parasitic intermediate stages.


Sign in / Sign up

Export Citation Format

Share Document