environmental cues
Recently Published Documents


TOTAL DOCUMENTS

1213
(FIVE YEARS 343)

H-INDEX

75
(FIVE YEARS 7)

Author(s):  
Rujia Luo ◽  
Yutao Huang ◽  
Huan Ma ◽  
Jinhu Guo

Intrinsic circadian clocks generate circadian rhythms of physiology and behavior, which provide the capabilities to adapt to cycling environmental cues that result from the self-rotation of the Earth. Circadian misalignment leads to deleterious impacts on adaptation and health in different organisms. The environmental cues on the interplanetary journey to and on Mars dramatically differ from those on Earth. These differences impose numerous adaptive challenges, including challenges for humans’ circadian clock. Thus, adaptation of circadian rhythms to the Martian environment is a prerequisite for future landing and dwelling on Mars. Here, we review the progress of studies associated with the influence of the Martian environment on circadian rhythms and propose directions for further study and potential strategies to improve the adaptation of the circadian clock for future Mars missions.


2022 ◽  
Author(s):  
Olesia M Bilash ◽  
Spyridon Chavlis ◽  
Panayiota Poirazi ◽  
Jayeeta Basu

The lateral entorhinal cortex (LEC) provides information about multi-sensory environmental cues to the hippocampus through direct inputs to the distal dendrites of CA1 pyramidal neurons. A growing body of work suggests that LEC neurons perform important functions for episodic memory processing, coding for contextually-salient elements of an environment or the experience within it. However, we know little about the functional circuit interactions between LEC and the hippocampus. In this study, we combine functional circuit mapping and computational modeling to examine how long-range glutamatergic LEC projections modulate compartment-specific excitation-inhibition dynamics in hippocampal area CA1. We demonstrate that glutamatergic LEC inputs can drive local dendritic spikes in CA1 pyramidal neurons, aided by the recruitment of a disinhibitory vasoactive intestinal peptide (VIP)-expressing inhibitory neuron microcircuit. Our circuit mapping further reveals that, in parallel, LEC also recruits cholecystokinin (CCK)-expressing inhibitory neurons, which our model predicts act as a strong suppressor of dendritic spikes. These results provide new insight into a cortically-driven GABAergic microcircuit mechanism that gates non-linear dendritic computations, which may support compartment-specific coding of multi-sensory contextual features within the hippocampus.


2022 ◽  
Vol 119 (3) ◽  
pp. e2108540119
Author(s):  
Abdouramane Camara ◽  
Alice C. Lavanant ◽  
Jun Abe ◽  
Henri Lee Desforges ◽  
Yannick O. Alexandre ◽  
...  

CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTβ) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTβR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTβR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTβR and RANK with implications for the immune response.


2022 ◽  
Vol 12 ◽  
Author(s):  
Anjali Mahilkar ◽  
Pavithra Venkataraman ◽  
Akshat Mall ◽  
Supreet Saini

Environmental cues in an ecological niche are often temporal in nature. For instance, in temperate climates, temperature is higher in daytime compared to during night. In response to these temporal cues, bacteria have been known to exhibit anticipatory regulation, whereby triggering response to a yet to appear cue. Such an anticipatory response in known to enhance Darwinian fitness, and hence, is likely an important feature of regulatory networks in microorganisms. However, the conditions under which an anticipatory response evolves as an adaptive response are not known. In this work, we develop a quantitative model to study response of a population to two temporal environmental cues, and predict variables which are likely important for evolution of anticipatory regulatory response. We follow this with experimental evolution of Escherichia coli in alternating environments of rhamnose and paraquat for ∼850 generations. We demonstrate that growth in this cyclical environment leads to evolution of anticipatory regulation. As a result, pre-exposure to rhamnose leads to a greater fitness in paraquat environment. Genome sequencing reveals that this anticipatory regulation is encoded via mutations in global regulators. Overall, our study contributes to understanding of how environment shapes the topology of regulatory networks in an organism.


2022 ◽  
Author(s):  
Girija A. Bodhankar ◽  
Payman Tohidifar ◽  
Zachary L. Foust ◽  
George W. Ordal ◽  
Christopher V. Rao

Bacillus subtilis employs ten chemoreceptors to move in response to chemicals in its environment. While the sensing mechanisms have been determined for many attractants, little is known about the sensing mechanisms for repellents. In this work, we investigated phenol chemotaxis in B. subtilis . Phenol is an attractant at low, micromolar concentrations, and a repellent at high, millimolar concentrations. McpA was found to be the principal chemoreceptor governing the repellent response to phenol and other related aromatic compounds. In addition, the chemoreceptors McpC and HemAT were found to govern the attractant response to phenol and related compounds. Using chemoreceptor chimeras, McpA was found to sense phenol using its signaling domain rather than its sensing domain. These observations were substantiated in vitro, where direct binding of phenol to the signaling domain of McpA was observed using saturation-transfer difference nuclear magnetic resonance. These results further advance our understanding of B. subtilis chemotaxis and further demonstrate that the signaling domain of B. subtilis chemoreceptors can directly sense chemoeffectors. IMPORTANCE Bacterial chemotaxis is commonly thought to employ a sensing mechanism involving the extracellular sensing domain of chemoreceptors. Some ligands, however, appear to be sensed by the signaling domain. Phenolic compounds, commonly found in soil and root exudates, provide environmental cues for soil microbes like Bacillus subtilis . We show that phenol is sensed both as an attractant and a repellent. While the mechanism for sensing phenol as an attractant is still unknown, we found that phenol is sensed as a repellent by the signaling domain of the chemoreceptor McpA. This study furthers our understanding of the unconventional sensing mechanisms employed by the B. subtilis chemotaxis pathway.


2022 ◽  
Author(s):  
Tadaaki Nishioka ◽  
Tom Macpherson ◽  
Kosuke Hamaguchi ◽  
Takatoshi Hikida

Abstract Learnt associations between environmental cues and the outcomes they predict (cue-outcome associations) play a major role in behavioral control, guiding not only which responses we should perform, but also which we should avoid, in order to achieve a specific goal. The encoding of such cue-outcome associations, as well as the performance of cue-guided goal-directed behavior, is thought to involve dopamine D1 and D2 receptor-expressing medium spiny neurons (D1-/D2-MSNs) of the nucleus accumbens (NAc). Here, using a visual discrimination task in mice, we assessed the role of NAc D1-/D2-MSNs in cue-guided goal-directed avoidance of inappropriate responding. Cell-type specific neuronal silencing and in-vivo imaging revealed NAc D2-MSNs to selectively contribute to cue-guided avoidance behavior, with activation of NAc D2-MSNs following response error playing an important role in optimizing future goal-directed behavior. Our findings indicate that error-signaling by NAc D2-MSNs underlies the ability to use environmental cues to avoid inappropriate behavior.


2022 ◽  
Vol 2 ◽  
Author(s):  
Charlotte Andrieux ◽  
Angélique Petit ◽  
Anne Collin ◽  
Marianne Houssier ◽  
Sonia Métayer-Coustard ◽  
...  

Early development is a critical period during which environmental influences can have a significant impact on the health, welfare, robustness and performance of livestock. In oviparous vertebrates, such as birds, embryonic development takes place entirely in the egg. This allows the effects of environmental cues to be studied directly on the developing embryo. Interestingly, beneficial effects have been identified in several studies, leading to innovative procedures to improve the phenotype of the animals in the long term. In this review, we discuss the effects of early temperature and dietary programming strategies that both show promising results, as well as their potential transgenerational effects. The timing, duration and intensity of these procedures are critical to ensure that they produce beneficial effects without affecting animal survival or final product quality. For example, cyclic increases in egg incubation temperature have been shown to improve temperature tolerance and promote muscular growth in chickens or fatty liver production in mule ducks. In ovo feeding has also been successfully used to enhance digestive tract maturation, optimize chick development and growth, and thus obtain higher quality chicks. In addition, changes in the nutritional availability of methyl donors, for example, was shown to influence offspring phenotype. The molecular mechanisms behind early phenotype programming are still under investigation and are probably epigenetic in nature as shown by recent work in chickens.


2021 ◽  
Author(s):  
Tosca van Gelderen ◽  
Jerome Montfort ◽  
José Antonio Álvarez-Diós ◽  
Violette Thermes ◽  
Francesc Piferrer ◽  
...  

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression in a wide variety of physiological processes, including those related to the reproductive system. Although in the last decade a plethora of miRNAs has been reported, the miRNA alterations occurred by environmental cues and their biological functions have not yet been elucidated. With the aim to identify epigenetic regulations mediated by miRNAs in the gonads in a climate change scenario, zebrafish (Danio rerio) were subjected to high temperatures during sex differentiation (18-32 days post fertilization, dpf), a treatment that results in male-skewed sex ratios. Once the fish reached adulthood (90 dpf), ovaries and testes were sequenced by high-throughput technologies. About 101 million high-quality reads were obtained from gonadal samples. Analyses of the expression levels of the miRNAs identified a total of 23 and 1 differentially expressed (DE) miRNAs in ovaries and testes, respectively, two months after the heat treatment. Most of the identified miRNAs were involved in human sex-related cancer. After retrieving 3’ UTR regions, ~400 predicted targets of the 24 DE miRNAs were obtained, some with reproduction-related functions. Their synteny in the zebrafish genome was, for more than half of them, in the chromosomes 7, 2, 4, 3 and 11 in the ovaries, chromosome 4 being the place where the predicted sex-associated-region (sar) is localized in wild zebrafish. Further, spatial localization in the gonads of two selected miRNAs (miR-122-5p and miR-146-5p) showed exclusive expression in the ovarian germ cells. The present study expands the catalog of sex-specific miRNAs and deciphers, for the first time, thermosensitive miRNAs in the zebrafish gonads that might be used as potential epimarkers to predict environmental past events.


2021 ◽  
Vol 12 ◽  
Author(s):  
D. Isabel Petrescu ◽  
Preston L. Dilbeck ◽  
Beronda L. Montgomery

The orange carotenoid protein (OCP) family of proteins are light-activated proteins that function in dissipating excess energy absorbed by accessory light-harvesting complexes, i.e., phycobilisomes (PBSs), in cyanobacteria. Some cyanobacteria contain multiple homologs of the OCP-encoding gene (ocp). Fremyella diplosiphon, a cyanobacterium studied for light-dependent regulation of PBSs during complementary chromatic acclimation (CCA), contains several OCP homologs – two full-length OCPs, three Helical Carotenoid Proteins (HCPs) with homology to the N-terminus of OCP, and one C-terminal domain-like carotenoid protein (CCP) with homology to the C-terminus of OCP. We examined whether these homologs are distinctly regulated in response to different environmental factors, which could indicate distinct functions. We observed distinct patterns of expression for some OCP, HCP, and CCP encoding genes, and have evidence that light-dependent aspects of ocp homolog expression are regulated by photoreceptor RcaE which controls CCA. RcaE-dependent transcriptional regulator RcaC is also involved in the photoregulation of some hcp genes. Apart from light, additional environmental factors associated with cellular redox regulation impact the mRNA levels of ocp homologs, including salt, cold, and disruption of electron transport. Analyses of conserved sequences in the promoters of ocp homologs were conducted to gain additional insight into regulation of these genes. Several conserved regulatory elements were found across multiple ocp homolog promoters that potentially control differential transcriptional regulation in response to a range of environmental cues. The impact of distinct environmental cues on differential accumulation of ocp homolog transcripts indicates potential functional diversification of this gene family in cyanobacteria. These genes likely enable dynamic cellular protection in response to diverse environmental stress conditions in F. diplosiphon.


Sign in / Sign up

Export Citation Format

Share Document