long reads
Recently Published Documents


TOTAL DOCUMENTS

730
(FIVE YEARS 534)

H-INDEX

28
(FIVE YEARS 12)

2022 ◽  
Author(s):  
David Pellow ◽  
Abhinav Dutta ◽  
Ron Shamir

As sequencing datasets keep growing larger, time and memory efficiency of read mapping are becoming more critical. Many clever algorithms and data structures were used to develop mapping tools for next generation sequencing, and in the last few years also for third generation long reads. A key idea in mapping algorithms is to sketch sequences with their minimizers. Recently, syncmers were introduced as an alternative sketching method that is more robust to mutations and sequencing errors. Here we introduce parameterized syncmer schemes, and provide a theoretical analysis for multi-parameter schemes. By combining these schemes with downsampling or minimizers we can achieve any desired compression and window guarantee. We introduced syncmer schemes into the popular minimap2 and Winnowmap2 mappers. In tests on simulated and real long read data from a variety of genomes, the syncmer-based algorithms reduced unmapped reads by 20-60% at high compression while using less memory. The advantage of syncmer-based mapping was even more pronounced at lower sequence identity. At sequence identity of 65-75% and medium compression, syncmer mappers had 50-60% fewer unmapped reads, and ∼ 10% fewer of the reads that did map were incorrectly mapped. We conclude that syncmer schemes improve mapping under higher error and mutation rates. This situation happens, for example, when the high error rate of long reads is compounded by a high mutation rate in a cancer tumor, or due to differences between strains of viruses or bacteria.


Author(s):  
Stephanie H. Chen ◽  
Maurizio Rossetto ◽  
Marlien Merwe ◽  
Patricia Lu‐Irving ◽  
Jia‐Yee S. Yap ◽  
...  

2022 ◽  
Author(s):  
Jun Ma ◽  
Manuel Cáceres ◽  
Leena Salmela ◽  
Veli Mäkinen ◽  
Alexandru I. Tomescu

Aligning reads to a variation graph is a standard task in pangenomics, with downstream applications in e.g., improving variant calling. While the vg toolkit (Garrison et al., Nature Biotechnology, 2018) is a popular aligner of short reads, GraphAligner (Rautiainen and Marschall, Genome Biology, 2020) is the state-of-the-art aligner of long reads. GraphAligner works by finding candidate read occurrences based on individually extending the best seeds of the read in the variation graph. However, a more principled approach recognized in the community is to co-linearly chain multiple seeds. We present a new algorithm to co-linearly chain a set of seeds in an acyclic variation graph, together with the first efficient implementation of such a co-linear chaining algorithm into a new aligner of long reads to variation graphs, GraphChainer. Compared to GraphAligner, at a normalized edit distance threshold of 40%, it aligns 9% to 12% more reads, and 15% to 19% more total read length, on real PacBio reads from human chromosomes 1 and 22. On both simulated and real data, GraphChainer aligns between 97% and 99% of all reads, and of total read length. At the more stringent normalized edit distance threshold of 30%, GraphChainer aligns up to 29% more total real read length than GraphAligner. GraphChainer is freely available at https://github.com/algbio/GraphChainer


2022 ◽  
Vol 12 ◽  
Author(s):  
Shuaibing Yang ◽  
Qianqian Zhao ◽  
Lihua Tang ◽  
Zejia Chen ◽  
Zhaoting Wu ◽  
...  

Human papillomavirus (HPV) is a causal agent for most cervical cancers. The physical status of the HPV genome in these cancers could be episomal, integrated, or both. HPV integration could serve as a biomarker for clinical diagnosis, treatment, and prognosis. Although whole-genome sequencing by next-generation sequencing (NGS) technologies, such as the Illumina sequencing platform, have been used for detecting integrated HPV genome in cervical cancer, it faces challenges of analyzing long repeats and translocated sequences. In contrast, Oxford nanopore sequencing technology can generate ultra-long reads, which could be a very useful tool for determining HPV genome sequence and its physical status in cervical cancer. As a proof of concept, in this study, we completed whole genome sequencing from a cervical cancer tissue and a CaSki cell line with Oxford Nanopore Technologies. From the cervical cancer tissue, a 7,894 bp-long HPV35 genomic sequence was assembled from 678 reads at 97-fold coverage of HPV genome, sharing 99.96% identity with the HPV sequence obtained by Sanger sequencing. A 7904 bp-long HPV16 genomic sequence was assembled from data generated from the CaSki cell line at 3857-fold coverage, sharing 99.99% identity with the reference genome (NCBI: U89348). Intriguingly, long reads generated by nanopore sequencing directly revealed chimeric cellular–viral sequences and concatemeric genomic sequences, leading to the discovery of 448 unique integration breakpoints in the CaSki cell line and 60 breakpoints in the cervical cancer sample. Taken together, nanopore sequencing is a unique tool to identify HPV sequences and would shed light on the physical status of HPV genome in its associated cancers.


GigaScience ◽  
2022 ◽  
Vol 11 (1) ◽  
Author(s):  
Olli-Pekka Smolander ◽  
Daniel Blande ◽  
Virpi Ahola ◽  
Pasi Rastas ◽  
Jaakko Tanskanen ◽  
...  

Abstract Background The Glanville fritillary (Melitaea cinxia) butterfly is a model system for metapopulation dynamics research in fragmented landscapes. Here, we provide a chromosome-level assembly of the butterfly's genome produced from Pacific Biosciences sequencing of a pool of males, combined with a linkage map from population crosses. Results The final assembly size of 484 Mb is an increase of 94 Mb on the previously published genome. Estimation of the completeness of the genome with BUSCO indicates that the genome contains 92–94% of the BUSCO genes in complete and single copies. We predicted 14,810 genes using the MAKER pipeline and manually curated 1,232 of these gene models. Conclusions The genome and its annotated gene models are a valuable resource for future comparative genomics, molecular biology, transcriptome, and genetics studies on this species.


2021 ◽  
Author(s):  
Zhenxian Zheng ◽  
Shumin Li ◽  
Junhao Su ◽  
Amy Wing-Sze Leung ◽  
Tak-Wah Lam ◽  
...  

Deep learning-based variant callers are becoming the standard and have achieved superior SNP calling performance using long reads. In this paper, we present Clair3, which makes the best of two major method categories: pile-up calling handles most variant candidates with speed, and full-alignment tackles complicated candidates to maximize precision and recall. Clair3 ran faster than any of the other state-of-the-art variant callers and performed the best, especially at lower coverage.


Life ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 30
Author(s):  
Konstantina Athanasopoulou ◽  
Michaela A. Boti ◽  
Panagiotis G. Adamopoulos ◽  
Paraskevi C. Skourou ◽  
Andreas Scorilas

Although next-generation sequencing (NGS) technology revolutionized sequencing, offering a tremendous sequencing capacity with groundbreaking depth and accuracy, it continues to demonstrate serious limitations. In the early 2010s, the introduction of a novel set of sequencing methodologies, presented by two platforms, Pacific Biosciences (PacBio) and Oxford Nanopore Sequencing (ONT), gave birth to third-generation sequencing (TGS). The innovative long-read technologies turn genome sequencing into an ease-of-handle procedure by greatly reducing the average time of library construction workflows and simplifying the process of de novo genome assembly due to the generation of long reads. Long sequencing reads produced by both TGS methodologies have already facilitated the decipherment of transcriptional profiling since they enable the identification of full-length transcripts without the need for assembly or the use of sophisticated bioinformatics tools. Long-read technologies have also provided new insights into the field of epitranscriptomics, by allowing the direct detection of RNA modifications on native RNA molecules. This review highlights the advantageous features of the newly introduced TGS technologies, discusses their limitations and provides an in-depth comparison regarding their scientific background and available protocols as well as their potential utility in research and clinical applications.


2021 ◽  
Author(s):  
Alaina Shumate ◽  
Brandon Wong ◽  
Geo Pertea ◽  
Mihaela Pertea

Short-read RNA sequencing and long-read RNA sequencing each have their strengths and weaknesses for transcriptome assembly. While short reads are highly accurate, they are unable to span multiple exons. Long-read technology can capture full-length transcripts, but its high error rate often leads to mis-identified splice sites, and its low throughput makes quantification difficult. Here we present a new release of StringTie that performs hybrid-read assembly. By taking advantage of the strengths of both long and short reads, hybrid-read assembly with StringTie is more accurate than long-read only or short-read only assembly, and on some datasets it can more than double the number of correctly assembled transcripts, while obtaining substantially higher precision than the long-read data assembly alone. Here we demonstrate the improved accuracy on simulated data and real data from Arabidopsis thaliana, Mus musculus,and human. We also show that hybrid-read assembly is more accurate than correcting long reads prior to assembly while also being substantially faster. StringTie is freely available as open source software at https://github.com/gpertea/stringtie.


2021 ◽  
Author(s):  
Songbo Wang ◽  
Jiadong Lin ◽  
Xiaofei Yang ◽  
Zihang Li ◽  
Tun Xu ◽  
...  

Integration of Hepatitis B (HBV) virus into human genome disrupts genetic structures and cellular functions. Here, we conducted multiplatform long read sequencing on two cell lines and five clinical samples of HBV-induced hepatocellular carcinomas (HCC). We resolved two types of complex viral integration induced genome rearrangements and established a Time-phased Integration and Rearrangement Model (TIRM) to depict their formation progress by differentiating inserted HBV copies with HiFi long reads. We showed that the two complex types were initialized from focal replacements and the fragile virus-human junctions triggered subsequent rearrangements. We further revealed that these rearrangements promoted a prevalent loss-of-heterozygosity at chr4q, accounting for 19.5% of HCC samples in ICGC cohort and contributing to immune and metabolic dysfunction. Overall, our long read based analysis reveals a novel sequential rearrangement progress driven by HBV integration, hinting the structural and functional implications on human genomes.


2021 ◽  
Author(s):  
Emma Peel ◽  
Luke Silver ◽  
Parice Brandies ◽  
Carolyn J Hogg ◽  
Katherine Belov

Biodiversity is declining globally, and Australia has one of the worst extinction records for mammals. The development of sequencing technologies means that genomic approaches are now available as important tools for wildlife conservation and management. Despite this, genome sequences are available for only 5% of threatened Australian species. Here we report the first reference genome for the woylie (Bettongia penicillata ogilbyi), a critically endangered marsupial from Western Australia, and the first genome within the Potoroidae family. The woylie reference genome was generated using Pacific Biosciences HiFi long-reads, resulting in a 3.39 Gbp assembly with a scaffold N50 of 6.49 Mbp and 86.5% complete mammalian BUSCOs. Assembly of a global transcriptome from pouch skin, tongue, heart and blood RNA-seq reads was used to guide annotation with Fgenesh++, resulting in the annotation of 24,655 genes. The woylie reference genome is a valuable resource for conservation, management and investigations into disease-induced decline of this critically endangered marsupial.


Sign in / Sign up

Export Citation Format

Share Document