genome rearrangement
Recently Published Documents


TOTAL DOCUMENTS

299
(FIVE YEARS 87)

H-INDEX

40
(FIVE YEARS 5)

2021 ◽  
Vol 8 ◽  
Author(s):  
Libin Wen ◽  
Kongwang He

Porcine circovirus type 2 (PCV2) belongs to the genus Circovirus of the family Circoviridae, and it has been associated with porcine circovirus (associated) disease (PCVD or PCVAD) in pigs. PCVAD is the generic term for a series of disease syndromes that have caused economic losses to the pig industry worldwide. Since the discovery of PCV2 in the late 1990s, the virus has continued to evolve, and novel genotypes have continued to appear. Moreover, there has been recombination between different genotypes of PCV2. This review attempts to illustrate some progress concerning PCV2 in genome rearrangement and genomic recombination with non-PCV2-related nucleic acids, particularly focusing on the porcine circovirus-like virus P1 formed by the recombination of PCV2. The presence of rearranged PCV2 genomes can be demonstrated both in vivo and in vitro, and these subviral molecules ranged from 358 to 1,136 bp. Depending on whether it has the ability to encode a protein, the agents formed by PCV2 recombination can be divided into two categories: porcine circovirus-like viruses and porcine circovirus-like mini agents. We mainly discuss the porcine circovirus-like virus P1 regarding genomic characterization, etiology, epidemiology, and pathogenesis. Further research needs to be conducted on the pathogenicity of other porcine circovirus-like viruses and porcine circovirus-like mini agents and the effects of their interactions with PCV2, especially for the porcine circovirus-like mini agents that do not have protein-coding functions in the genome.


2021 ◽  
Author(s):  
Rauf Salamzade ◽  
Abigail L. Manson ◽  
Bruce J. Walker ◽  
Thea Brennan-Krohn ◽  
Colin J. Worby ◽  
...  

Background: Carbapenem-resistant Enterobacterales (CRE) are an urgent global health threat. Inferring the dynamics of local CRE dissemination is currently limited by our inability to confidently trace the spread of resistance determinants to unrelated bacterial hosts. Whole genome sequence comparison is useful for identifying CRE clonal transmission and outbreaks, but high-frequency horizontal gene transfer (HGT) of carbapenem resistance genes and subsequent genome rearrangement complicate tracing the local persistence and mobilization of these genes across organisms. Methods: To overcome this limitation, we developed a new approach to identify recent HGT of large, near identical plasmid segments across species boundaries, which also allowed us to overcome technical challenges with genome assembly. We applied this to complete and near-complete genome assemblies to examine the local spread of CRE in a systematic, prospective collection of all CRE, as well as time- and species-matched carbapenem susceptible Enterobacterales, isolated from patients from four U.S. hospitals over nearly five years. Results: Our CRE collection comprised a diverse range of species, lineages and carbapenem resistance mechanisms, many of which were encoded on a variety of promiscuous plasmid types. We found and quantified rearrangement, persistence, and repeated transfer of plasmid segments, including those harboring carbapenemases, between organisms over multiple years. Some plasmid segments were found to be strongly associated with specific locales, thus representing geographic signatures that make it possible to trace recent and localized HGT events. Functional analysis of these signatures revealed genes commonly found in plasmids of nosocomial pathogens, such as functions required for plasmid retention and spread, as well survival against a variety of antibiotic and antiseptics common to the hospital environment. Conclusions: Collectively, the framework we developed provides a clearer, high resolution picture of the epidemiology of antibiotic resistance importation, spread, and persistence in patients and healthcare networks.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Klairton L. Brito ◽  
Andre R. Oliveira ◽  
Alexsandro O. Alexandrino ◽  
Ulisses Dias ◽  
Zanoni Dias

Abstract Background In the comparative genomics field, one of the goals is to estimate a sequence of genetic changes capable of transforming a genome into another. Genome rearrangement events are mutations that can alter the genetic content or the arrangement of elements from the genome. Reversal and transposition are two of the most studied genome rearrangement events. A reversal inverts a segment of a genome while a transposition swaps two consecutive segments. Initial studies in the area considered only the order of the genes. Recent works have incorporated other genetic information in the model. In particular, the information regarding the size of intergenic regions, which are structures between each pair of genes and in the extremities of a linear genome. Results and conclusions In this work, we investigate the sorting by intergenic reversals and transpositions problem on genomes sharing the same set of genes, considering the cases where the orientation of genes is known and unknown. Besides, we explored a variant of the problem, which generalizes the transposition event. As a result, we present an approximation algorithm that guarantees an approximation factor of 4 for both cases considering the reversal and transposition (classic definition) events, an improvement from the 4.5-approximation previously known for the scenario where the orientation of the genes is unknown. We also present a 3-approximation algorithm by incorporating the generalized transposition event, and we propose a greedy strategy to improve the performance of the algorithms. We performed practical tests adopting simulated data which indicated that the algorithms, in both cases, tend to perform better when compared with the best-known algorithms for the problem. Lastly, we conducted experiments using real genomes to demonstrate the applicability of the algorithms.


2021 ◽  
Vol 22 (23) ◽  
pp. 12807
Author(s):  
Kyung-Ha Lee ◽  
Do-Yeon Kim ◽  
Wanil Kim

Many diseases that involve malignant tumors in the elderly affect the quality of human life; therefore, the relationship between aging and pathogenesis in geriatric diseases must be under-stood to develop appropriate treatments for these diseases. Recent reports have shown that epigenetic regulation caused by changes in the local chromatin structure plays an essential role in aging. This review provides an overview of the roles of telomere shortening on genomic structural changes during an age-dependent shift in gene expression. Telomere shortening is one of the most prominent events that is involved in cellular aging and it affects global gene expression through genome rearrangement. This review provides novel insights into the roles of telomere shortening in disease-affected cells during pathogenesis and suggests novel therapeutic approaches.


Author(s):  
Antonio J. Martín-Galiano ◽  
Ernesto García

Bacteriophages (phages) are viruses that infect bacteria. They are the most abundant biological entity on Earth (current estimates suggest there to be perhaps 1031 particles) and are found nearly everywhere. Temperate phages can integrate into the chromosome of their host, and prophages have been found in abundance in sequenced bacterial genomes. Prophages may modulate the virulence of their host in different ways, e.g., by the secretion of phage-encoded toxins or by mediating bacterial infectivity. Some 70% of Streptococcus pneumoniae (the pneumococcus)—a frequent cause of otitis media, pneumonia, bacteremia and meningitis—isolates harbor one or more prophages. In the present study, over 4000 S. pneumoniae genomes were examined for the presence of prophages, and nearly 90% were found to contain at least one prophage, either defective (47%) or present in full (43%). More than 7000 complete putative integrases, either of the tyrosine (6243) or serine (957) families, and 1210 full-sized endolysins (among them 1180 enzymes corresponding to 318 amino acid-long N-acetylmuramoyl-L-alanine amidases [LytAPPH]) were found. Based on their integration site, 26 different pneumococcal prophage groups were documented. Prophages coding for tRNAs, putative virulence factors and different methyltransferases were also detected. The members of one group of diverse prophages (PPH090) were found to integrate into the 3’ end of the host lytASpn gene encoding the major S. pneumoniae autolysin without disrupting it. The great similarity of the lytASpnand lytAPPH genes (85–92% identity) allowed them to recombine, via an apparent integrase-independent mechanism, to produce different DNA rearrangements within the pneumococcal chromosome. This study provides a complete dataset that can be used to further analyze pneumococcal prophages, their evolutionary relationships, and their role in the pathogenesis of pneumococcal disease.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12260
Author(s):  
Runxian Yu ◽  
Chenyu Sun ◽  
Ying Liu ◽  
Renchao Zhou

Shifts from cis-to trans-splicing of mitochondrial introns tend to correlate with relative genome rearrangement rates during vascular plant evolution, as is particularly apparent in some lineages of gymnosperms. However, although many angiosperms have also relatively high mitogenomic rearrangement rates, very few cis-to trans-splicing shifts except for five trans-spliced introns shared in seed plants have been reported. In this study, we sequenced and characterized the mitogenome of Tolypanthus maclurei, a hemiparasitic plant from the family Loranthaceae (Santalales). The mitogenome was assembled into a circular chromosome of 256,961 bp long, relatively small compared with its relatives from Santalales. It possessed a gene content of typical angiosperm mitogenomes, including 33 protein-coding genes, three rRNA genes and ten tRNA genes. Plastid-derived DNA fragments took up 9.1% of the mitogenome. The mitogenome contained one group I intron (cox1i729) and 23 group II introns. We found shifts from cis-to trans-splicing of five additional introns in its mitogenome, of which two are specific in T. maclurei. Moreover, atp1 is a chimeric gene and phylogenetic analysis indicated that a 356 bp region near the 3′ end of atp1 of T. maclurei was acquired from Lamiales via horizontal gene transfer. Our results suggest that shifts to trans-splicing of mitochondrial introns may not be uncommon among angiosperms.


2021 ◽  
Author(s):  
Tamanna Yasmin ◽  
Phil Grayson ◽  
Margaret F. Docker ◽  
Sara V. Good

The sea lamprey genome undergoes programmed genome rearrangement (PGR) in which ~20% is jettisoned from somatic cells soon after fertilization. Although the role of PGR in embryonic development has been studied, the role of the germline-specific region (GSR) in gonad development is unknown. We analysed RNA-sequence data from 28 sea lamprey gonads sampled across life-history stages, generated a genome-guided de novo superTransciptome with annotations, and identified genes in the GSR. We found that the 638 genes in the GSR are enriched for reproductive processes, exhibit 36x greater odds of being expressed in testes than ovaries, show little evidence of conserved synteny with other chordates, and most have putative paralogues in the GSR and/or somatic genomes. Further, several of these genes play known roles in sex determination and differentiation in other vertebrates. We conclude that the GSR of sea lamprey plays an important role in testicular differentiation and potentially sex determination.


2021 ◽  
Author(s):  
Sara Lopez-Gomollon ◽  
Sebastian Y Mueller ◽  
David C Baulcombe

Hybridization and environmental stress trigger genome shock that perturbs patterns of gene expression leading to phenotypic changes. In extreme examples it is associated to transposon mobilization and genome rearrangement. Here we discover a novel alternative mechanism in interspecific Solanum hybrids in which changes to gene expression were associated with DCL2-mediated small (s)RNAs derived from endogenous (para)retroviruses (EPRVs). Correspondingly, the altered patterns of gene expression overlapped with the effects of dcl2 mutation and the changes to sRNA profiles involved 22nt species produced in the DCL2 biogenesis pathway. These findings implicate hybridization-induced genome shock leading to EPRV activation and sRNA silencing as causing changes in gene expression. Such hybridization-induced variation in gene expression could increase the range of traits available for selection in natural evolution or in breeding for agriculture.


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1198
Author(s):  
Siti Roszilawati Ramli ◽  
Boyke Bunk ◽  
Cathrin Spröer ◽  
Robert Geffers ◽  
Michael Jarek ◽  
...  

The ability of Leptospirae to persist in environments and animal hosts but to cause clinically highly variable disease in humans has made leptospirosis the most common zoonotic disease. Considering the paucity of data on variation in complete genomes of human pathogenic Leptospirae, we have used a combination of Single Molecule Real-Time (SMRT) and Illumina sequencing to obtain complete genome sequences of six human clinical L. interrogans isolates from Malaysia. All six contained the larger (4.28–4.56 Mb) and smaller (0.34–0.395 Mb) chromosome typical of human pathogenic Leptospirae and 0–7 plasmids. Only 24% of the plasmid sequences could be matched to databases. We identified a core genome of 3271 coding sequences and strain-specific accessory genomes of 50–352 coding sequences. These sequences enabled detailed genomic strain typing (Genome BLAST Distance Phylogeny, DNA–DNA hybridization, and multi locus sequence typing) and phylogenetic classification (whole-genome SNP genotyping). Even though there was some shared synteny and collinearity across the six genomes, there was evidence of major genome rearrangement, likely driven by horizontal gene transfer and homologous recombination. Mobile genetic elements were identified in all strains in highly varying numbers, including in the rfb locus, which defines serogroups and contributes to immune escape and pathogenesis. On the other hand, there was high conservation of virulence-associated genes including those relating to sialic acid, alginate, and lipid A biosynthesis. These findings suggest (i) that the antigenic variation, adaption to various host environments, and broad spectrum of virulence of L. interrogans are in part due to a high degree of genomic plasticity and (ii) that human pathogenic strains maintain a core set of genes required for virulence.


Sign in / Sign up

Export Citation Format

Share Document