AbstractWe combine infrared absorption and Raman scattering spectroscopies to explore the properties of the heavy transition metal dichalcogenide 1T-HfS2. We employ the LO–TO splitting of the Eu vibrational mode along with a reevaluation of mode mass, unit cell volume, and dielectric constant to reveal the Born effective charge. We find $${Z}_{{\rm{B}}}^{* }$$
Z
B
*
= 5.3e, in excellent agreement with complementary first-principles calculations. In addition to resolving the controversy over the nature of chemical bonding in this system, we decompose Born charge into polarizability and local charge. We find α = 5.07 Å3 and Z* = 5.2e, respectively. Polar displacement-induced charge transfer from sulfur p to hafnium d is responsible for the enhanced Born charge compared to the nominal 4+ in hafnium. 1T-HfS2 is thus an ionic crystal with strong and dynamic covalent effects. Taken together, our work places the vibrational properties of 1T-HfS2 on a firm foundation and opens the door to understanding the properties of tubes and sheets.