Antimicrobial Activity
Recently Published Documents


TOTAL DOCUMENTS

26475
(FIVE YEARS 11898)

H-INDEX

181
(FIVE YEARS 46)

Author(s):  
Olufunso O. Abosede

Abstract: In the recent past, the pharmaceutical modification of drug molecules by complexation with biologically relevant metals to improve their properties such as stability, dissolution rate, absorption and bioavailability has been extensively studied. In order to achieve better and enhanced medicinal activity, vanadyl complexes of the widely used lincomycin (Lin-van) and neomycin (Neo-van) have been synthesized and their physico-chemical properties examined. The UV-Vis absorption properties of these complexes were determined and their antimicrobial activities were tested against some pathogenic organisms viz: Proteus vulgaris, Klebsiella pneumonae, Escherichia coli and Staphylococcus aureus. In all cases, Neo-van showed better antimicrobial activity than Lin-van while both complexes showed better activity than the antibiotic lincomycin and the previously reported Cu-Lin. Keywords: lincomycin, neomycin, UV-Vis spectroscopy, Physico-chemical, Oxovanadyl, synthesis


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
Samira Zamani ◽  
Anis Mohammadi ◽  
Bahareh Hajikhani ◽  
Parnaz Abiri ◽  
Maryam Fazeli ◽  
...  

The spread of mupirocin-resistant Staphylococcus aureus strains in hospitals and communities is a universal challenge. Limited data is available on the genetic features of high-level mupirocin resistant- (HLMUPR-) S. aureus isolates in Tehran. In the present research, we investigated 48 high-level mupirocin resistance S. aureus by antimicrobial activity, virulence analysis, biofilm formation, multilocus sequence typing (MLST), and staphylocoagulase (SC) typing. All the HLMUPR strains were positive for mupA gene. The frequency of multidrug resistance was 97.9%. Twenty-one (43.8%) were toxinogenic with 14 producing pvl (29.2%), 5 tst (10.4%), and two eta (4.2%). Among the HLMUPR isolates, biofilm production was detected in 45 (89.6%) isolates with complete dominance clfB, clfA genes, and a noticeably high frequency fnbA (95.8%), followed by fnbB (93.8%), eno and icaD (each 83.3%), sdrC (81.3%), ebps (79.2%), icaA (75%), sdrD (66.7%), fib (60.4%), sdrE (50%), cna (41.7%), and bap (4.2%). Coagulase typing distinguished isolates into four genotypic patterns including III (50%), II (27.1%), and type IVa (22.9%). A total of three clonal complexes (CCs) and 4 sequence types (STs) including CC/ST22 as the most prevalent (52.1%), CC8/ST239 (20.8%), CC/ST8 (16.7%), and CC/ST5 (10.4%) were identified in current work. According to our analysis, nonbiofilm producer isolates belonged to CC8/ST239 (6.3%) and CC/ST8 (4.2%). Fusidic acid-resistant isolates belonged to CC/ST45 ( n = 3 ) and CC8/ST239 ( n = 1 ). Observations highlighted the circulation of the CC/ST22 HLMUPR S. aureus strains with strong biofilm-production ability in our hospitals, indicating the possibility of transmission of this type between community and hospital.


2022 ◽  
Author(s):  
T.O. KHAMITOVA ◽  
M.ZH. BURKEEV ◽  
A.ZH.SARSENBEKOVA ◽  
M.YU. ISHMURATOVA ◽  
G.K.MUKUSHEVA ◽  
...  

Abstract The article presents the results of the synthesis and study of the structure of metal-polymer complexes p-EGM: АА/Ag, p-EGM: АА/Ni, p-EGM:АА/Ag-Ni, p-PGM:АА/Ag, p-PGM:АА/Ni, p-PGM:АА/Ag-Ni based on copolymers of polyethylene(propylene)glycolmaleates with acrylic acid and metals, which have been characterized using microscopy, spectroscopy and thermogravimetry. The antimicrobial activity of a new metal-polymer nanocomposite p-PGM/АА-Ag was studied, which is showing high efficiency against standard strains of Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus.


Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 108
Author(s):  
Arya Nair ◽  
Rashmi Mallya ◽  
Vasanti Suvarna ◽  
Tabassum Asif Khan ◽  
Munira Momin ◽  
...  

Microbial pathogens are the most prevalent cause of chronic infections and fatalities around the world. Antimicrobial agents including antibiotics have been frequently utilized in the treatment of infections due to their exceptional outcomes. However, their widespread use has resulted in the emergence of multidrug-resistant strains of bacteria, fungi, viruses, and parasites. Furthermore, due to inherent resistance to antimicrobial drugs and the host defence system, the advent of new infectious diseases, chronic infections, and the occurrence of biofilms pose a tougher challenge to the current treatment line. Essential oils (EOs) and their biologically and structurally diverse constituents provide a distinctive, inexhaustible, and novel source of antibacterial, antiviral, antifungal, and antiparasitic agents. However, due to their volatile nature, chemical susceptibility, and poor solubility, their development as antimicrobials is limited. Nanoparticles composed of biodegradable polymeric and inorganic materials have been studied extensively to overcome these limitations. Nanoparticles are being investigated as nanocarriers for antimicrobial delivery, antimicrobial coatings for food products, implantable devices, and medicinal materials in dressings and packaging materials due to their intrinsic capacity to overcome microbial resistance. Essential oil-loaded nanoparticles may offer the potential benefits of synergism in antimicrobial activity, high loading capacity, increased solubility, decreased volatility, chemical stability, and enhancement of the bioavailability and shelf life of EOs and their constituents. This review focuses on the potentiation of the antimicrobial activity of essential oils and their constituents in nanoparticulate delivery systems for a wide range of applications, such as food preservation, packaging, and alternative treatments for infectious diseases.


2022 ◽  
Vol 12 ◽  
Author(s):  
Youcheng Yang ◽  
Jiajun Chen ◽  
Linqing Lu ◽  
Zizheng Xu ◽  
Feng Li ◽  
...  

In the lumen of blood vessels, there are large numbers of erythrocytes, which are approximately 95% of the total blood cells. Although the function of erythrocytes is to transport oxygen in the organism, recent studies have shown that mammalian and teleost erythrocytes are involved in the immune response against bacterial infections. However, the immune mechanisms used by avian erythrocytes are not yet clear. Here, we demonstrated that erythrocytes from goose have the ability to phagocytose as well as conduct antimicrobial activity. Firstly, we revealed the phagocytosis or adhesion activity of goose erythrocytes for latex beads 0.1-1.0 μm in diameter by fluorescence microscopy, and scanning and transmission electron microscopy. The low cytometry results also proved that goose erythrocytes had a wide range of phagocytic or adhesion activity for different bacteria. Followed, the low cytometry analysis data further explored that the goose erythrocytes contain the ability to produce reactive oxygen species (ROS) and inducible nitric oxide synthase (iNOS) in response to bacterial stimulation, and also up-regulated the expression of NOX family includes NOX1 and NOX5. Finally, we also found that goose erythrocytes showed a powerful antibacterial activity against all the three bacteria, meanwhile the stimulation of three kinds of bacteria up-regulated the expression of inflammatory factors, and increased the production of antioxidant enzymes to protect the cells from oxidative damage. Herein, our results demonstrate that goose Erythrocytes possess a certain phagocytic capacity and antioxidant system, and that the antimicrobial activity of erythrocytes can occurred through the production of unique respiratory burst against foreign pathogenic bacteria, which provides new clues to the interaction between bacteria and avian erythrocytes.


Sign in / Sign up

Export Citation Format

Share Document