sparse coding
Recently Published Documents


TOTAL DOCUMENTS

1765
(FIVE YEARS 419)

H-INDEX

65
(FIVE YEARS 9)

2022 ◽  
Vol 166 ◽  
pp. 107336
Author(s):  
Xin Xing ◽  
Rui Xie ◽  
Wenxuan Zhong

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 96
Author(s):  
Shujun Liu ◽  
Ningjie Pu ◽  
Jianxin Cao ◽  
Kui Zhang

Synthetic aperture radar (SAR) images are inherently degraded by speckle noise caused by coherent imaging, which may affect the performance of the subsequent image analysis task. To resolve this problem, this article proposes an integrated SAR image despeckling model based on dictionary learning and multi-weighted sparse coding. First, the dictionary is trained by groups composed of similar image patches, which have the same structural features. An effective orthogonal dictionary with high sparse representation ability is realized by introducing a properly tight frame. Furthermore, the data-fidelity term and regularization terms are constrained by weighting factors. The weighted sparse representation model not only fully utilizes the interblock relevance but also reflects the importance of various structural groups in despeckling processing. The proposed model is implemented with fast and effective solving steps that simultaneously perform orthogonal dictionary learning, weight parameter updating, sparse coding, and image reconstruction. The solving steps are designed using the alternative minimization method. Finally, the speckles are further suppressed by iterative regularization methods. In a comparison study with existing methods, our method demonstrated state-of-the-art performance in suppressing speckle noise and protecting the image texture details.


Author(s):  
Juan E Arco ◽  
Andrés Ortiz ◽  
Javier Ramírez ◽  
Yu-Dong Zhang ◽  
Juan M Górriz

The automation in the diagnosis of medical images is currently a challenging task. The use of Computer Aided Diagnosis (CAD) systems can be a powerful tool for clinicians, especially in situations when hospitals are overflowed. These tools are usually based on artificial intelligence (AI), a field that has been recently revolutionized by deep learning approaches. blackThese alternatives usually obtain a large performance based on complex solutions, leading to a high computational cost and the need of having large databases. In this work, we propose a classification framework based on sparse coding. Images are blackfirst partitioned into different tiles, and a dictionary is built after applying PCA to these tiles. The original signals are then transformed as a linear combination of the elements of the dictionary. blackThen, they are reconstructed by iteratively deactivating the elements associated with each component. Classification is finally performed employing as features the subsequent reconstruction errors. Performance is evaluated in a real context where distinguishing between four different pathologies: control versus bacterial pneumonia versus viral pneumonia versus COVID-19. blackOur system differentiates between pneumonia patients and controls with an accuracy of 97.74%, whereas in the 4-class context the accuracy is 86.73%. The excellent results and the pioneering use of sparse coding in this scenario evidence that our proposal can assist clinicians when their workload is high.


Author(s):  
Dhara J. Sangani ◽  
Rajesh A. Thakker ◽  
S. D. Panchal ◽  
Rajesh Gogineni

The optical satellite sensors encounter certain constraints on producing high-resolution multispectral (HRMS) images. Pan-sharpening (PS) is a remote sensing image fusion technique, which is an effective mechanism to overcome the limitations of available imaging products. The prevalent issue in PS algorithms is the imbalance between spatial quality and spectral details preservation, thereby producing intensity variations in the fused image. In this paper, a PS method is proposed based on convolutional sparse coding (CSC) implemented in the non-subsampled shearlet transform (NSST) domain. The source images, panchromatic (PAN) and multispectral (MS) images, are decomposed using NSST. The resultant high-frequency bands are fused using adaptive weights determined from chaotic grey wolf optimization (CGWO) algorithm. The CSC-based model is employed to fuse the low-frequency bands. Further, an iterative filtering mechanism is developed to enhance the quality of fused image. Four datasets with different geographical content like urban area, vegetation, etc. and eight existing algorithms are used for evaluation of the proposed PS method. The comprehensive visual and quantitative results approve that the proposed method accomplishes considerable improvement in spatial and spectral details equivalence in the pan-sharpened image.


2021 ◽  
Author(s):  
Jianfeng Wu ◽  
Wenhui Zhu ◽  
Yi Su ◽  
Jie Gui ◽  
Natasha Lepore ◽  
...  

2021 ◽  
Vol 118 (49) ◽  
pp. e2102158118
Author(s):  
Nada Y. Abdelrahman ◽  
Eleni Vasilaki ◽  
Andrew C. Lin

Neural circuits use homeostatic compensation to achieve consistent behavior despite variability in underlying intrinsic and network parameters. However, it remains unclear how compensation regulates variability across a population of the same type of neurons within an individual and what computational benefits might result from such compensation. We address these questions in the Drosophila mushroom body, the fly’s olfactory memory center. In a computational model, we show that under sparse coding conditions, memory performance is degraded when the mushroom body’s principal neurons, Kenyon cells (KCs), vary realistically in key parameters governing their excitability. However, memory performance is rescued while maintaining realistic variability if parameters compensate for each other to equalize KC average activity. Such compensation can be achieved through both activity-dependent and activity-independent mechanisms. Finally, we show that correlations predicted by our model’s compensatory mechanisms appear in the Drosophila hemibrain connectome. These findings reveal compensatory variability in the mushroom body and describe its computational benefits for associative memory.


Author(s):  
Anna-Maria Jürgensen ◽  
Afshin Khalili ◽  
Elisabetta Chicca ◽  
Giacomo Indiveri ◽  
Martin Paul Nawrot

Abstract Animal nervous systems are highly efficient in processing sensory input. The neuromorphic computing paradigm aims at the hardware implementation of neural network computations to support novel solutions for building brain-inspired computing systems. Here, we take inspiration from sensory processing in the nervous system of the fruit fly larva. With its strongly limited computational resources of <200 neurons and <1.000 synapses the larval olfactory pathway employs fundamental computations to transform broadly tuned receptor input at the periphery into an energy efficient sparse code in the central brain. We show how this approach allows us to achieve sparse coding and increased separability of stimulus patterns in a spiking neural network, validated with both software simulation and hardware emulation on mixed-signal real-time neuromorphic hardware. We verify that feedback inhibition is the central motif to support sparseness in the spatial domain, across the neuron population, while the combination of spike frequency adaptation and feedback inhibition determines sparseness in the temporal domain. Our experiments demonstrate that such small-sized, biologically realistic neural networks, efficiently implemented on neuromorphic hardware, can achieve parallel processing and efficient encoding of sensory input at full temporal resolution.


Author(s):  
Yong Tang ◽  
Anqin Lu ◽  
Zhen Liu ◽  
Yan Leng ◽  
Rongyan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document