möbius transformations
Recently Published Documents


TOTAL DOCUMENTS

216
(FIVE YEARS 25)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 32 (1) ◽  
Author(s):  
Rodrigo Hernández ◽  
María J. Martín

2021 ◽  
Vol 5 (3) ◽  
pp. 73
Author(s):  
Leah K. Mork ◽  
Darin J. Ulness

This work reports on a study of the Mandelbrot set and Julia set for a generalization of the well-explored function η(z)=z2+λ. The generalization consists of composing with a fixed Möbius transformation at each iteration step. In particular, affine and inverse Möbius transformations are explored. This work offers a new way of visualizing the Mandelbrot and filled-in Julia sets. An interesting and unexpected appearance of hyperbolic triangles occurs in the structure of the Mandelbrot sets for the case of inverse Möbius transforms. Several lemmas and theorems associated with these types of fractal sets are presented.


Author(s):  
Ulrich Pinkall ◽  
Boris Springborn

AbstractLiouville’s theorem says that in dimension greater than two, all conformal maps are Möbius transformations. We prove an analogous statement about simplicial complexes, where two simplicial complexes are considered discretely conformally equivalent if they are combinatorially equivalent and the lengths of corresponding edges are related by scale factors associated with the vertices.


Author(s):  
Sharon Zhou ◽  
Jiequan Zhang ◽  
Hang Jiang ◽  
Torbjorn Lundh ◽  
Andrew Ng

Author(s):  
Matthew Jacques ◽  
Ian Short

Abstract Motivated by a problem on the dynamics of compositions of plane hyperbolic isometries, we prove several fundamental results on semigroups of isometries, thought of as real Möbius transformations. We define a semigroup $S$ of Möbius transformations to be semidiscrete if the identity map is not an accumulation point of $S$. We say that $S$ is inverse free if it does not contain the identity element. One of our main results states that if $S$ is a semigroup generated by some finite collection $\mathcal{F}$ of Möbius transformations, then $S$ is semidiscrete and inverse free if and only if every sequence of the form $F_n=f_1\dotsb f_n$, where $f_n\in \mathcal{F}$, converges pointwise on the upper half-plane to a point on the ideal boundary, where convergence is with respect to the chordal metric on the extended complex plane. We fully classify all two-generator semidiscrete semigroups and include a version of Jørgensen’s inequality for semigroups. We also prove theorems that have familiar counterparts in the theory of Fuchsian groups. For instance, we prove that every semigroup is one of four standard types: elementary, semidiscrete, dense in the Möbius group, or composed of transformations that fix some nontrivial subinterval of the extended real line. As a consequence of this theorem, we prove that, with certain minor exceptions, a finitely generated semigroup $S$ is semidiscrete if and only if every two-generator semigroup contained in $S$ is semidiscrete. After this we examine the relationship between the size of the “group part” of a semigroup and the intersection of its forward and backward limit sets. In particular, we prove that if $S$ is a finitely generated nonelementary semigroup, then $S$ is a group if and only if its two limit sets are equal. We finish by applying some of our methods to address an open question of Yoccoz.


Sign in / Sign up

Export Citation Format

Share Document