parameterized complexity
Recently Published Documents


TOTAL DOCUMENTS

452
(FIVE YEARS 110)

H-INDEX

27
(FIVE YEARS 2)

Algorithmica ◽  
2022 ◽  
Author(s):  
Daniel Lokshtanov ◽  
Amer E. Mouawad ◽  
Fahad Panolan ◽  
Sebastian Siebertz

2021 ◽  
Vol 13 (4) ◽  
pp. 1-40
Author(s):  
Spoorthy Gunda ◽  
Pallavi Jain ◽  
Daniel Lokshtanov ◽  
Saket Saurabh ◽  
Prafullkumar Tale

A graph operation that contracts edges is one of the fundamental operations in the theory of graph minors. Parameterized Complexity of editing to a family of graphs by contracting k edges has recently gained substantial scientific attention, and several new results have been obtained. Some important families of graphs, namely, the subfamilies of chordal graphs, in the context of edge contractions, have proven to be significantly difficult than one might expect. In this article, we study the F -Contraction problem, where F is a subfamily of chordal graphs, in the realm of parameterized approximation. Formally, given a graph G and an integer k , F -Contraction asks whether there exists X ⊆ E(G) such that G/X ∈ F and | X | ≤ k . Here, G/X is the graph obtained from G by contracting edges in X . We obtain the following results for the F - Contraction problem: • Clique Contraction is known to be FPT . However, unless NP⊆ coNP/ poly , it does not admit a polynomial kernel. We show that it admits a polynomial-size approximate kernelization scheme ( PSAKS ). That is, it admits a (1 + ε)-approximate kernel with O ( k f(ε)) vertices for every ε > 0. • Split Contraction is known to be W[1]-Hard . We deconstruct this intractability result in two ways. First, we give a (2+ε)-approximate polynomial kernel for Split Contraction (which also implies a factor (2+ε)- FPT -approximation algorithm for Split Contraction ). Furthermore, we show that, assuming Gap-ETH , there is no (5/4-δ)- FPT -approximation algorithm for Split Contraction . Here, ε, δ > 0 are fixed constants. • Chordal Contraction is known to be W[2]-Hard . We complement this result by observing that the existing W[2]-hardness reduction can be adapted to show that, assuming FPT ≠ W[1] , there is no F(k) - FPT -approximation algorithm for Chordal Contraction . Here, F(k) is an arbitrary function depending on k alone. We say that an algorithm is an h(k) - FPT -approximation algorithm for the F -Contraction problem, if it runs in FPT time, and on any input (G, k) such that there exists X ⊆ E(G) satisfying G/X ∈ F and | X | ≤ k , it outputs an edge set Y of size at most h(k) ċ k for which G/Y is in F .


Algorithmica ◽  
2021 ◽  
Author(s):  
Fedor V. Fomin ◽  
Petr A. Golovach ◽  
William Lochet ◽  
Pranabendu Misra ◽  
Saket Saurabh ◽  
...  

AbstractWe initiate the parameterized complexity study of minimum t-spanner problems on directed graphs. For a positive integer t, a multiplicative t-spanner of a (directed) graph G is a spanning subgraph H such that the distance between any two vertices in H is at most t times the distance between these vertices in G, that is, H keeps the distances in G up to the distortion (or stretch) factor t. An additive t-spanner is defined as a spanning subgraph that keeps the distances up to the additive distortion parameter t, that is, the distances in H and G differ by at most t. The task of Directed Multiplicative Spanner is, given a directed graph G with m arcs and positive integers t and k, decide whether G has a multiplicative t-spanner with at most $$m-k$$ m - k arcs. Similarly, Directed Additive Spanner asks whether G has an additive t-spanner with at most $$m-k$$ m - k arcs. We show that (i) Directed Multiplicative Spanner admits a polynomial kernel of size $$\mathcal {O}(k^4t^5)$$ O ( k 4 t 5 ) and can be solved in randomized $$(4t)^k\cdot n^{\mathcal {O}(1)}$$ ( 4 t ) k · n O ( 1 ) time, (ii) the weighted variant of Directed Multiplicative Spanner can be solved in $$k^{2k}\cdot n^{\mathcal {O}(1)}$$ k 2 k · n O ( 1 ) time on directed acyclic graphs, (iii) Directed Additive Spanner is $${{\,\mathrm{\mathsf{W}}\,}}[1]$$ W [ 1 ] -hard when parameterized by k for every fixed $$t\ge 1$$ t ≥ 1 even when the input graphs are restricted to be directed acyclic graphs. The latter claim contrasts with the recent result of Kobayashi from STACS 2020 that the problem for undirected graphs is $${{\,\mathrm{\mathsf{FPT}}\,}}$$ FPT when parameterized by t and k.


Author(s):  
Prosenjit Bose ◽  
Saeed Mehrabi ◽  
Debajyoti Mondal

Author(s):  
Dušan Knop ◽  
Martin Koutecký ◽  
Asaf Levin ◽  
Matthias Mnich ◽  
Shmuel Onn

2021 ◽  
Vol 71 ◽  
pp. 993-1048
Author(s):  
Niclas Boehmer ◽  
Robert Bredereck ◽  
Klaus Heeger ◽  
Rolf Niedermeier

We initiate the study of external manipulations in Stable Marriage by considering  several manipulative actions as well as several manipulation goals. For instance, one goal  is to make sure that a given pair of agents is matched in a stable solution, and this may be  achieved by the manipulative action of reordering some agents' preference lists. We present  a comprehensive study of the computational complexity of all problems arising in this way.  We find several polynomial-time solvable cases as well as NP-hard ones. For the NP-hard  cases, focusing on the natural parameter "budget" (that is, the number of manipulative  actions one is allowed to perform), we also conduct a parameterized complexity analysis  and encounter mostly parameterized hardness results. 


Algorithmica ◽  
2021 ◽  
Author(s):  
V. Arvind ◽  
Johannes Köbler ◽  
Sebastian Kuhnert ◽  
Jacobo Torán

Author(s):  
Matthias Bentert ◽  
Roman Haag ◽  
Christian Hofer ◽  
Tomohiro Koana ◽  
André Nichterlein

Sign in / Sign up

Export Citation Format

Share Document