strongly connected component
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 1)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 27 (2) ◽  
pp. 113-130
Author(s):  
Shane St. Luce ◽  
Hiroki Sayama

Abstract The El Farol Bar problem highlights the issue of bounded rationality through a coordination problem where agents must decide individually whether or not to attend a bar without prior communication. Each agent is provided a set of attendance predictors (or decision-making strategies) and uses the previous bar attendances to guess bar attendance for a given week to determine if the bar is worth attending. We previously showed how the distribution of used strategies among the population settles into an attractor by using a spatial phase space. However, this approach was limited as it required N − 1 dimensions to fully visualize the phase space of the problem, where N is the number of strategies available. Here we propose a new approach to phase space visualization and analysis by converting the strategy dynamics into a state transition network centered on strategy distributions. The resulting weighted, directed network gives a clearer representation of the strategy dynamics once we define an attractor of the strategy phase space as a sink-strongly connected component. This enables us to study the resulting network to draw conclusions about the performance of the different strategies. We find that this approach not only is applicable to the El Farol Bar problem, but also addresses the dimensionality issue and is theoretically applicable to a wide variety of discretized complex systems.



2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Adèle Weber Zendrera ◽  
Nataliya Sokolovska ◽  
Hédi A. Soula

Abstract Background Metabolic networks reflect the relationships between metabolites (biomolecules) and the enzymes (proteins), and are of particular interest since they describe all chemical reactions of an organism. The metabolic networks are constructed from the genome sequence of an organism, and the graphs can be used to study fluxes through the reactions, or to relate the graph structure to environmental characteristics and phenotypes. About ten years ago, Takemoto et al. (2007) stated that the structure of prokaryotic metabolic networks represented as undirected graphs, is correlated to their living environment. Although metabolic networks are naturally directed graphs, they are still usually analysed as undirected graphs. Results We implemented a pipeline to reconstruct metabolic networks from genome data and confirmed some of the results of Takemoto et al. (2007) with today data using up-to-date databases. However, Takemoto et al. (2007) used only a fraction of all available enzymes from the genome and taking into account all the enzymes we fail to reproduce the main results. Therefore, we introduce three robust measures on directed representations of graphs, which lead to similar results regardless of the method of network reconstruction. We show that the size of the largest strongly connected component, the flow hierarchy and the Laplacian spectrum are strongly correlated to the environmental conditions. Conclusions We found a significant negative correlation between the size of the largest strongly connected component (a cycle) and the optimal growth temperature of the considered prokaryotes. This relationship holds true for the spectrum, high temperature being associated with lower eigenvalues. The hierarchy flow shows a negative correlation with optimal growth temperature. This suggests that the dynamical properties of the network are dependant on environmental factors.





2018 ◽  
Vol 29 (4) ◽  
pp. 830-842 ◽  
Author(s):  
Yu Zhang ◽  
Xiaofei Liao ◽  
Xiang Shi ◽  
Hai Jin ◽  
Bingsheng He




2014 ◽  
Vol 98 ◽  
pp. 28-37
Author(s):  
Jochen Blath ◽  
Stephan Kadow ◽  
Marcel Ortgiese


Sign in / Sign up

Export Citation Format

Share Document