cocompact lattice
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 1)

H-INDEX

2
(FIVE YEARS 0)

Author(s):  
Corina Ciobotaru ◽  
Vladimir Finkelshtein ◽  
Cagri Sert

Abstract We prove analogues of some of the classical results in homogeneous dynamics in nonlinear setting. Let $G$ be a closed subgroup of the group of automorphisms of a biregular tree and $\Gamma \leq G$ a discrete subgroup. For a large class of groups $G$, we give a classification of the probability measures on $G/\Gamma $ invariant under horospherical subgroups. When $\Gamma $ is a cocompact lattice, we show the unique ergodicity of the horospherical action. We prove Hedlund’s theorem for geometrically finite quotients. Finally, we show equidistribution of large compact orbits.


2018 ◽  
Vol 2020 (23) ◽  
pp. 9420-9439
Author(s):  
Vasily Rogov

Abstract An Iwasawa manifold is a compact complex homogeneous manifold isomorphic to a quotient $G/\Lambda $, where $G$ is the group of complex unipotent $3 \times 3$ matrices and $\Lambda \subset G$ is a cocompact lattice. In this work, we study holomorphic submanifolds in Iwasawa manifolds. We prove that any compact complex curve in an Iwasawa manifold is contained in a holomorphic subtorus. We also prove that any complex surface in an Iwasawa manifold is either an abelian surface or a Kähler non-projective isotrivial elliptic surface of Kodaira dimension one. In the Appendix, we show that any subtorus in Iwasawa manifold carries complex multiplication.


2015 ◽  
Vol 151 (12) ◽  
pp. 2212-2250
Author(s):  
Jonathan David Evans ◽  
Jarek Kędra

The Kodaira–Thurston manifold is a quotient of a nilpotent Lie group by a cocompact lattice. We compute the family Gromov–Witten invariants which count pseudoholomorphic tori in the Kodaira–Thurston manifold. For a fixed symplectic form the Gromov–Witten invariant is trivial so we consider the twistor family of left-invariant symplectic forms which are orthogonal for some fixed metric on the Lie algebra. This family defines a loop in the space of symplectic forms. This is the first example of a genus one family Gromov–Witten computation for a non-Kähler manifold.


2014 ◽  
Vol 06 (01) ◽  
pp. 75-105 ◽  
Author(s):  
Benben Liao

We extend Vincent Lafforgue's results to Sp4. As applications, the family of expanders constructed by finite quotients of a lattice in such a group does not admit a uniform embedding in any Banach space of type > 1, and any affine isometric action of such a group, or of any cocompact lattice in it, in a Banach space of type > 1 has a fixed point.


2011 ◽  
Vol 10 (06) ◽  
pp. 1187-1219 ◽  
Author(s):  
LISA CARBONE ◽  
LEIGH COBBS

Let A be a symmetrizable affine or hyperbolic generalized Cartan matrix. Let G be a locally compact Kac–Moody group associated to A over a finite field 𝔽q. We suppose that G has type ∞, that is, the Weyl group W of G is a free product of ℤ/2ℤ's. This includes all locally compact Kac–Moody groups of rank 2 and three possible locally compact rank 3 Kac–Moody groups of noncompact hyperbolic type. For every prime power q, we give a sufficient condition for the rank 2 Kac–Moody group G to contain a cocompact lattice [Formula: see text] with quotient a simplex, and we show that this condition is satisfied when q = 2s. If further Mq and [Formula: see text] are abelian, we give a method for constructing an infinite descending chain of cocompact lattices … Γ3 ≤ Γ2 ≤ Γ1 ≤ Γ. This allows us to characterize each of the quotient graphs of groups Γi\\X, the presentations of the Γi and their covolumes, where X is the Tits building of G, a homogeneous tree. Our approach is to extend coverings of edge-indexed graphs to covering morphisms of graphs of groups with abelian groupings. This method is not specific to cocompact lattices in Kac–Moody groups and may be used to produce chains of subgroups acting on trees in a general setting. It follows that the lattices constructed in the rank 2 Kac–Moody group have the Haagerup property. When q = 2 and rank (G) = 3 we show that G contains a cocompact lattice Γ′1 that acts discretely and cocompactly on a simplicial tree [Formula: see text]. The tree [Formula: see text] is naturally embedded in the Tits building X of G, a rank 3 hyperbolic building. Moreover Γ′1 ≤ Λ′ for a non-discrete subgroup Λ′ ≤ G whose quotient Λ′ \ X is equal to G\X. Using the action of Γ′1 on [Formula: see text] we construct an infinite descending chain of cocompact lattices …Γ′3 ≤ Γ′2 ≤ Γ′1 in G. We also determine the quotient graphs of groups [Formula: see text], the presentations of the Γ′i and their covolumes.


2001 ◽  
Vol 64 (1) ◽  
pp. 44-60 ◽  
Author(s):  
ELEANOR G. RIEFFEL

The most powerful geometric tools are those of differential geometry, but to apply such techniques to finitely generated groups seems hopeless at first glance since the natural metric on a finitely generated group is discrete. However Gromov recognized that a group can metrically resemble a manifold in such a way that geometric results about that manifold carry over to the group [18, 20]. This resemblance is formalized in the concept of a ‘quasi-isometry’. This paper contributes to an ongoing program to understand which groups are quasi-isometric to which simply connected, homogeneous, Riemannian manifolds [15, 18, 20] by proving that any group quasi-isometric to H2×R is a finite extension of a cocompact lattice in Isom(H2×R) or Isom(SL˜(2, R)).


1999 ◽  
Vol 19 (1) ◽  
pp. 35-60 ◽  
Author(s):  
A. KONONENKO

In Part 1 we describe a duality method for calculating twisted cocycles. In Part 2 we use our method to prove various results on cohomological rigidity of higher-rank cocompact lattice actions. In Part 3 we use the results of Parts 1 and 2 to prove infinitesimal rigidity of the actions of cocompact lattices on the maximal boundaries of some non-compact type symmetric spaces.


Sign in / Sign up

Export Citation Format

Share Document