fourier representation
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 4)

H-INDEX

14
(FIVE YEARS 1)

2019 ◽  
Vol 19 (5&6) ◽  
pp. 392-412
Author(s):  
Ryuhei Mori

In this work, we consider a new type of Fourier-like representation of Boolean function f\colon\{+1,-1\}^n\to\{+1,-1\}: f(x) = \cos(\pi\sum_{S\subseteq[n]}\phi_S \prod_{i\in S} x_i). This representation, which we call the periodic Fourier representation, of Boolean function is closely related to a certain type of multipartite Bell inequalities and non-adaptive measurement-based quantum computation with linear side-processing NMQCp. The minimum number of non-zero coefficients in the above representation, which we call the periodic Fourier sparsity, is equal to the required number of qubits for the exact computation of f by \NMQCp. Periodic Fourier representations are not unique, and can be directly obtained both from the Fourier representation and the F_2-polynomial representation. In this work, we first show that Boolean functions related to ZZZZ-polynomial have small periodic Fourier sparsities. Second, we show that the periodic Fourier sparsity is at least 2^{\deg_{\mathbb{F}_2}(f)}-1, which means that NMQCp efficiently computes a Boolean function $f$ if and only if F_2-degree of f is small. Furthermore, we show that any symmetric Boolean function, e.g., AND_n, Mod^3_n, Maj_n, etc, can be exactly computed by depth-2 NMQCp using a polynomial number of qubits, that implies exponential gaps between NMQCp and depth-2 NMQCp.


Author(s):  
Francisco-Javier Sayas ◽  
Thomas S. Brown ◽  
Matthew E. Hassell

Sign in / Sign up

Export Citation Format

Share Document