cayley maps
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 4)

H-INDEX

13
(FIVE YEARS 0)

2021 ◽  
Vol 148 ◽  
pp. 84-124
Author(s):  
István Kovács ◽  
Young Soo Kwon
Keyword(s):  

10.37236/5962 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Mikhail Muzychuk ◽  
Gábor Somlai

The Cayley Isomorphism property for combinatorial objects was introduced by L. Babai in 1977. Since then it has been intensively studied for binary relational structures: graphs, digraphs, colored graphs etc. In this paper we study this property for oriented Cayley maps. A Cayley map is a Cayley graph provided by a cyclic rotation of its connection set.  If the underlying graph is connected, then the map is an embedding of a Cayley graph into an oriented surface with the same cyclic rotation around every vertex.Two Cayley maps are called Cayley isomorphic if there exists a map isomorphism between them which is a group isomorphism too. We say that a finite group $H$ is a CIM-group if any two Cayley maps over $H$ are isomorphic if and only if they are Cayley isomorphic.The paper contains two main results regarding CIM-groups. The first one provides necessary conditons for being a CIM-group. It shows that a CIM-group should be one of the following$$\mathbb{Z}_m\times\mathbb{Z}_2^r, \\mathbb{Z}_m\times\mathbb{Z}_{4},\\mathbb{Z}_m\times\mathbb{Z}_{8}, \ \mathbb{Z}_m\times Q_8, \\mathbb{Z}_m\rtimes\mathbb{Z}_{2^e}, e=1,2,3,$$ where $m$ is an odd square-free number and $r$ a non-negative integer. Our second main result shows that the groups $\mathbb{Z}_m\times\mathbb{Z}_2^r$, $\mathbb{Z}_m\times\mathbb{Z}_{4}$, $\mathbb{Z}_m\times Q_8$ contained in the above list are indeed CIM-groups.


2017 ◽  
Vol 127 ◽  
pp. 187-204
Author(s):  
István Kovács ◽  
Young Soo Kwon
Keyword(s):  

2017 ◽  
Vol 340 (1) ◽  
pp. 3125-3139 ◽  
Author(s):  
Annachiara Korchmaros ◽  
István Kovács

2016 ◽  
Vol 339 (12) ◽  
pp. 2933-2940
Author(s):  
Haimiao Chen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document