calabi extremal metrics
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

Axioms ◽  
2018 ◽  
Vol 8 (1) ◽  
pp. 2
Author(s):  
Zhuang-Dan Guan ◽  
Pilar Orellana ◽  
Anthony Van

This paper is one of a series in which we generalize our earlier results on the equivalence of existence of Calabi extremal metrics to the geodesic stability for any type I compact complex almost homogeneous manifolds of cohomogeneity one. In this paper, we actually carry all the earlier results to the type I cases. In Part II, we obtained a substantial amount of new Kähler–Einstein manifolds as well as Fano manifolds without Kähler–Einstein metrics. In particular, by applying Theorem 15 therein, we obtained complete results in the Theorems 3 and 4 in that paper. However, we only have partial results in Theorem 5. In this note, we provide a report of recent progress on the Fano manifolds N n , m when n > 15 and N n , m ′ when n > 4 . We provide two pictures for these two classes of manifolds. See Theorems 1 and 2 in the last section. Moreover, we present two conjectures. Once we solve these two conjectures, the question for these two classes of manifolds will be completely solved. By applying our results to the canonical circle bundles, we also obtain Sasakian manifolds with or without Sasakian–Einstein metrics. These also provide open Calabi–Yau manifolds.



2003 ◽  
Vol 14 (03) ◽  
pp. 259-287 ◽  
Author(s):  
DANIEL GUAN

In this paper we prove that on certain manifolds Nn with nonnegative first Chern class the existence of extremal metric in a Kähler class is the same as the stability of the Kähler class. We also obtain many new Kähler classes with extremal metrics, in particular, the Kähler-Einstein metrics for Nn with n > 2. We also compare the problem of finding Calabi extremal metrics with the similar problem of finding Hermitian–Einstein metrics on the holomorphic vector bundles. We explain the geodesic stability and found that the stability for the manifold is much more complicated



Sign in / Sign up

Export Citation Format

Share Document