indefinite inner product
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 11)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 37 ◽  
pp. 659-670
Author(s):  
Gilbert J. Groenewald ◽  
Dawie B. Janse van Rensburg ◽  
André C.M. Ran ◽  
Frieda Theron ◽  
Madelein Van Straaten

Polar decompositions of quaternion matrices with respect to a given indefinite inner product are studied. Necessary and sufficient conditions for the existence of an $H$-polar decomposition are found. In the process, an equivalent to Witt's theorem on extending $H$-isometries to $H$-unitary matrices is given for quaternion matrices.


2020 ◽  
Vol 36 (36) ◽  
pp. 21-37
Author(s):  
Philip Saltenberger

In this work some results on the structure-preserving diagonalization of selfadjoint and skewadjoint matrices in indefinite inner product spaces are presented. In particular, necessary and sufficient conditions on the symplectic diagonalizability of (skew)-Hamiltonian matrices and the perplectic diagonalizability of per(skew)-Hermitian matrices are provided. Assuming the structured matrix at hand is additionally normal, it is shown that any symplectic or perplectic diagonalization can always be constructed to be unitary. As a consequence of this fact, the existence of a unitary, structure-preserving diagonalization is equivalent to the existence of a specially structured additive decomposition of such matrices. The implications of this decomposition are illustrated by several examples.


2020 ◽  
Vol 2020 ◽  
pp. 1-8 ◽  
Author(s):  
K. Niazi Asil ◽  
M. Ghasemi Kamalvand

The indefinite inner product defined by J=diagj1,…,jn, jk∈−1,+1, arises frequently in some applications, such as the theory of relativity and the research of the polarized light. This indefinite scalar product is referred to as hyperbolic inner product. In this paper, we introduce three indefinite iterative methods: indefinite Arnoldi’s method, indefinite Lanczos method (ILM), and indefinite full orthogonalization method (IFOM). The indefinite Arnoldi’s method is introduced as a process that constructs a J-orthonormal basis for the nondegenerated Krylov subspace. The ILM method is introduced as a special case of the indefinite Arnoldi’s method for J-Hermitian matrices. IFOM is mentioned as a process for solving linear systems of equations with J-Hermitian coefficient matrices. Finally, by providing numerical examples, the FOM, IFOM, and ILM processes have been compared with each other in terms of the required time for solving linear systems and also from the point of the number of iterations.


2020 ◽  
Vol S (1) ◽  
pp. 560-562
Author(s):  
D. Krishnaswamy ◽  
A. Narayanasamy

Sign in / Sign up

Export Citation Format

Share Document