wall sheer stress
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 1)

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Timothy Luke Surman ◽  
John Matthew Abrahams ◽  
Jim Manavis ◽  
John Finnie ◽  
Chris Christou ◽  
...  

Abstract Background In our earlier study on the functional limits of the aneurysmal aortic root we determined the pig root is susceptible to failure at high aortic pressures levels. We established a pig rupture model using cardiopulmonary bypass to determine the most susceptible region of the aortic root under the highest pressures achievable using continuous flow, and what changes occur in these regions on a macroscopic and histological level. This information may help guide clinical management of aortic root and ascending aorta pathology. Methods Five pigs underwent 4D flow MRI imaging pre surgery to determine vasopressor induced wall sheer stress and flow parameters. All pigs were then placed on cardiopulmonary bypass (CPB) via median sternotomy, and maximal aortic root and ascending aorta flows were initiated until rupture or failure, to determine the most susceptible region of the aorta. The heart was explanted and analysed histologically to determine if histological changes mirror the macroscopic observations. Results The magnetic resonance imaging (MRI) aortic flow and wall sheer stress (WSS) increased significantly in all regions of the aorta, and the median maximal pressures obtained during cardiopulmonary bypass was 497 mmHg and median maximal flows was 3.96 L/m. The area of failure in all experiments was the non-coronary cusp of the aortic valve. Collagen and elastin composition (%) was greatest in the proximal regions of the aorta. Collagen I and III showed greatest content in the inner aortic root and ascending aorta regions. Conclusions This unique porcine model shows that the aortic root is most susceptible to failure at high continuous aortic pressures, supported histologically by different changes in collagen content and subtypes in the aortic root. With further analysis, this information could guide management of the aortic root in disease.


2021 ◽  
Author(s):  
Timothy Luke Surman ◽  
John Matthew Abrahams ◽  
Jim Manavis ◽  
John Finnie ◽  
Chris Christou ◽  
...  

Abstract Background In our earlier study on the functional limits of the aneurysmal aortic root we determined the pig root is susceptible to failure at high aortic pressures levels. We established a pig rupture model using cardiopulmonary bypass to determine the most susceptible region of the aortic root under the highest pressures achievable using continuous flow, and what changes occur in these regions on a macroscopic and histological level. This information may help guide clinical management of aortic root and ascending aorta pathology. Methods Five pigs underwent 4D flow MRI imaging pre surgery to determine vasopressor induced wall sheer stress and flow parameters. All pigs were then placed on cardiopulmonary bypass (CPB) via median sternotomy, and maximal aortic root and ascending aorta flows were initiated until rupture or failure, to determine the most susceptible region of the aorta. The heart was explanted and analysed histologically to determine if histological changes mirror the macroscopic observations. Results The magnetic resonance imaging (MRI) aortic flow and wall sheer stress (WSS) increased significantly in all regions of the aorta, and the median maximal pressures obtained during cardiopulmonary bypass was 497mmHg and median maximal flows was 3.96L/m. The area of failure in all experiments was the non-coronary cusp of the aortic valve. Collagen and elastin composition (%) was greatest in the proximal regions of the aorta. Collagen I and III showed greatest content in the inner aortic root and ascending aorta regions. Conclusions This unique porcine model shows that the aortic root is most susceptible to failure at high continuous aortic pressures, supported histologically by different changes in collagen content and subtypes in the aortic root. With further analysis, this information could guide management of the aortic root in disease.


2019 ◽  
Vol 9 (1) ◽  
pp. 31-45 ◽  
Author(s):  
Courtney L. Fisher ◽  
Stacie L. Demel

Background: Saccular intracranial aneurysms (IAs) are outpouchings of the vessel wall of intracranial arteries. Rupture of IAs results in subarachnoid hemorrhage which is associated with high morbidity and mortality. Surgical interventions, such as clipping and coiling, have associated risks. Currently, there are no proven pharmacological treatments to prevent the growth or rupture of IAs. Infiltration of proinflammatory cytokines in response to increased wall sheer stress is a hallmark of IA. Nonsteroidal anti-inflammatory drugs (NSAIDs) are being investigated as potential therapeutic agents for reduction in growth and/or prevention of IA through inhibition of inflammatory pathways. Summary: This review will discuss the role of NSAIDs in attenuating the inflammation that drives IA progression and rupture. There are two main subtypes of NSAIDs, nonselective COX and selective COX-2 inhibitors, both of which have merit in treating IA. Evidence will be presented which shows that NSAIDs inhibit several key inflammatory mediators involved in IA progression including nuclear factor-κB, tumor necrosis factor-α, and matrix metalloproteinases. In addition, the role of NSAIDs in limiting inflammatory cell adhesion to endothelial cells and attenuating endothelial cell senescence will be discussed. Key Messages: There is an abundance of basic science and preclinical data that support NSAIDs as a promising treatment for IA. Additionally, a combination treatment strategy of low-dose aspirin given concomitantly with a selective COX-2 inhibitor may result in a reduced side effect profile compared to aspirin or selective COX-2 inhibitor use alone. Several large clinical trials are currently planned to further investigate the efficacy of NSAIDs as an effective nonsurgical treatment for IAs.


Sign in / Sign up

Export Citation Format

Share Document