arithmetical functions
Recently Published Documents


TOTAL DOCUMENTS

268
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Imre Kátai ◽  
Bui Minh Phong

We give all functions ƒ , E: ℕ → ℂ which satisfy the relation for every a, b, c ∈ ℕ, where h ≥ 0 is an integers and K is a complex number. If n cannot be written as a2 + b2 + c2 + h for suitable a, b, c ∈ ℕ, then ƒ (n) is not determined. This is more complicated if we assume that ƒ and E are multiplicative functions.


2021 ◽  
Vol 27 (3) ◽  
pp. 143-154
Author(s):  
I. Kátai ◽  
◽  
B. M. Phong ◽  

Let k\in{\mathbb N}_0 and K\in \mathbb C, where {\mathbb N}_0, \mathbb C denote the set of nonnegative integers and complex numbers, respectively. We give all functions f, h_1, h_2, h_3, h_4:{\mathbb N}_0\to \mathbb C which satisfy the relation \[f(x_1^2+x_2^2+x_3^2+x_4^2+k)=h_1(x_1)+h_2(x_2)+h_3(x_3)+h_4(x_4)+K\] for every x_1, x_2, x_3, x_4\in{\mathbb N}_0. We also give all arithmetical functions F, H_1, H_2, H_3, H_4:{\mathbb N}\to \mathbb C which satisfy the relation \[F(x_1^2+x_2^2+x_3^2+x_4^2+k)=H_1(x_1)+H_2(x_2)+H_3(x_3)+H_4(x_4)+K\] for every x_1,x_2, x_3,x_4\in{\mathbb N}, where {\mathbb N} denotes the set of all positive integers.


2021 ◽  
Vol 27 (3) ◽  
pp. 130-142
Author(s):  
Richa Sharma ◽  
◽  
Sanjay Bhatter ◽  

Let k\in{\mathbb N}_0 and K\in \mathbb C, where {\mathbb N}_0, \mathbb C denote the set of nonnegative integers and complex numbers, respectively. We give all functions f, h_1, h_2, h_3, h_4:{\mathbb N}_0\to \mathbb C which satisfy the relation \[f(x_1^2+x_2^2+x_3^2+x_4^2+k)=h_1(x_1)+h_2(x_2)+h_3(x_3)+h_4(x_4)+K\] for every x_1, x_2, x_3, x_4\in{\mathbb N}_0. We also give all arithmetical functions F, H_1, H_2, H_3, H_4:{\mathbb N}\to \mathbb C which satisfy the relation \[F(x_1^2+x_2^2+x_3^2+x_4^2+k)=H_1(x_1)+H_2(x_2)+H_3(x_3)+H_4(x_4)+K\] for every x_1,x_2, x_3,x_4\in{\mathbb N}, where {\mathbb N} denotes the set of all positive integers.


2021 ◽  
Author(s):  
James Anderson ◽  
Jan Bergstra

We review the exposition of division by zero and the definition of total arithmetical functions in ``Introduction to Logic" by Patrick Suppes, 1957, and provide a hyperlink to the archived text. This book is a pedagogical introduction to first-order predicate calculus with logical, mathematical, physical and philosophical examples, some presented in exercises. It is notable for (i) presenting division by zero as a problem worthy of contemplation, (ii) considering five totalisations of real arithmetic, and (iii) making the observation that each of these solutions to ``the problem of division by zero" has both advantages and disadvantages -- none of the proposals being fully satisfactory. We classify totalisations by the number of non-real symbols they introduce, called their Extension Type. We compare Suppes' proposals for division by zero to more recent proposals. We find that all totalisations of Extension Type 0 are arbitrary, hence all non-arbitrary totalisations are of Extension Type at least 1. Totalisations of the differential and integral calculus have Extension Type at least 2. In particular, Meadows have Extension Type 1, Wheels have Extension Type 2, and Transreal numbers have Extension Type 3. It appears that Suppes was the modern originator of the idea that all real numbers divided by zero are equal to zero. This has Extension Type 0 and is, therefore, arbitrary.


Author(s):  
Vladimír Baláž ◽  
Tomáš Visnyai

Let n > 1 be an integer with its canonical representation, n = p 1 α 1 p 2 α 2 ⋯ p k α k . Put H n = max α 1 … α k , h n = min α 1 … α k , ω n = k , Ω n = α 1 + ⋯ + α k , f n = ∏ d ∣ n d and f ∗ n = f n n . Many authors deal with the statistical convergence of these arithmetical functions. For instance, the notion of normal order is defined by means of statistical convergence. The statistical convergence is equivalent with I d –convergence, where I d is the ideal of all subsets of positive integers having the asymptotic density zero. In this part, we will study I –convergence of the well-known arithmetical functions, where I = I c q = A ⊂ N : ∑ a ∈ A a − q < + ∞ is an admissible ideal on N such that for q ∈ 0 1 we have I c q ⊊ I d , thus I c q –convergence is stronger than the statistical convergence ( I d –convergence).


2020 ◽  
Vol 26 (2) ◽  
pp. 224-233
Author(s):  
Abdu Awel Adem ◽  
Mehmet Kucukaslan

In this paper, by using natural density of subsets of N, the statistical limit and cluster points of the arithmetical functions (ap (n)), γ (n),τ(n), Δ γ (n) and Δ τ (n) are studied. In addition to this, we also investigate statistical limit and cluster points of (Δ r γ (n) and (Δ r τ (n)) for each r ın N.


2020 ◽  
Vol 70 (3) ◽  
pp. 781-791 ◽  
Author(s):  
Horst Alzer ◽  
Man Kam Kwong

Sign in / Sign up

Export Citation Format

Share Document