stochastic variational inequality
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 4)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Pei-Yu Li

This paper uses a merit function derived from the Fishcher–Burmeister function and formulates box-constrained stochastic variational inequality problems as an optimization problem that minimizes this merit function. A sufficient condition for the existence of a solution to the optimization problem is suggested. Finally, this paper proposes a Monte Carlo sampling method for solving the problem. Under some moderate conditions, comprehensive convergence analysis is included as well.



Author(s):  
Yan-Chao Liang ◽  
Qiao-Na Fan ◽  
Pei-Ping Shen

In this paper, we consider a class of stochastic variational inequality problems (SVIPs). Different from the classical variational inequality problems, the SVIP contains a mathematical expectation, which may not be evaluated in an explicit form in general. We combine a hybrid Newton method for deterministic cases with an unconstrained optimization reformulation based on the well-known D-gap function and sample average approximation (SAA) techniques to present an SAA-based hybrid Newton method for solving the SVIP. We show that the level sets of the approximation D-gap function are bounded. Furthermore, we prove that the sequence generated by the hybrid Newton method converges to a solution of the SVIP under appropriate conditions, and some numerical experiments are presented to prove the effectiveness and competitiveness of the hybrid Newton method. Finally, we apply this method to solve two specific traffic equilibrium problems.



2020 ◽  
Vol 37 (03) ◽  
pp. 2050011
Author(s):  
Zhen-Ping Yang ◽  
Yuliang Wang ◽  
Gui-Hua Lin

We propose a variance-based modified backward-forward algorithm with a stochastic approximation version of Armijo’s line search, which is robust with respect to an unknown Lipschitz constant, for solving a class of stochastic variational inequality problems. A salient feature of the proposed algorithm is to compute only one projection and two independent queries of a stochastic oracle at each iteration. We analyze the proposed algorithm for its asymptotic convergence, sublinear convergence rate in terms of the mean natural residual function, and optimal oracle complexity under moderate conditions. We also discuss the linear convergence rate with finite computational budget for the proposed algorithm without strong monotonicity. Preliminary numerical experiments indicate that the proposed algorithm is competitive with some existing algorithms. Furthermore, we consider an application in dealing with an equilibrium problem in stochastic natural gas trading market.



Author(s):  
Hai-Lin Sun ◽  
Xiao-Jun Chen

Abstract The stochastic variational inequality (SVI) provides a unified form of optimality conditions of stochastic optimization and stochastic games which have wide applications in science, engineering, economics and finance. In the recent two decades, one-stage SVI has been studied extensively and widely used in modeling equilibrium problems under uncertainty. Moreover, the recently proposed two-stage SVI and multistage SVI can be applied to the case when the decision makers want to make decisions at different stages in a stochastic environment. The two-stage SVI is a foundation of multistage SVI, which is to find a pair of “here-and-now” solution and “wait-and-see” solution. This paper provides a survey of recent developments in analysis, algorithms and applications of the two-stage SVI.



Sign in / Sign up

Export Citation Format

Share Document