positively invariant set
Recently Published Documents


TOTAL DOCUMENTS

28
(FIVE YEARS 4)

H-INDEX

11
(FIVE YEARS 1)

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-6 ◽  
Author(s):  
Fuchen Zhang

In this paper, we investigate the ultimate bound set and positively invariant set of a 3D Lorenz-like chaotic system, which is different from the well-known Lorenz system, Rössler system, Chen system, Lü system, and even Lorenz system family. Furthermore, we investigate the global exponential attractive set of this system via the Lyapunov function method. The rate of the trajectories going from the exterior of the globally exponential attractive set to the interior of the globally exponential attractive set is also obtained for all the positive parameters values a,b,c. The innovation of this paper is that our approach to construct the ultimate bounded and globally exponential attractivity sets assumes that the corresponding sets depend on some artificial parameters (λ and m); that is, for the fixed parameters of the system, we have a series of sets depending on λ and m. The results contain the known result as a special case for the fixed λ and m. The efficiency of the scheme is shown numerically. The theoretical results may find wide applications in chaos control and chaos synchronization.


2017 ◽  
Vol 27 (08) ◽  
pp. 1750116
Author(s):  
Alexandr V. Osipov ◽  
Gunnar Söderbacka

In this paper, we consider a family of systems with two predators feeding on one prey. We show how to construct a positively invariant set in which it is possible to define a Poincaré map for examining the behavior of the system, mainly in the case when both predators survive. We relate it to examples from earlier works.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
G. Kai ◽  
W. Zhang ◽  
Z. C. Wei ◽  
J. F. Wang ◽  
A. Akgul

This paper introduces a new four-dimensional hyperchaotic financial system on the basis of an established three-dimensional nonlinear financial system and a dynamic model by adding a controller term to consider the effect of control on the system. In terms of the proposed financial system, the sufficient conditions for nonexistence of chaotic and hyperchaotic behaviors are derived theoretically. Then, the solutions of equilibria are obtained. For each equilibrium, its stability and existence of Hopf bifurcation are validated. Based on corresponding first Lyapunov coefficient of each equilibrium, the analytical proof of the existence of periodic solutions is given. The ultimate bound and positively invariant set for the financial system are obtained and estimated. There exists a stable periodic solution obtained near the unstable equilibrium point. Finally, the dynamic behaviors of the new system are explored from theoretical analysis by using the bifurcation diagrams and phase portraits. Moreover, the hyperchaotic financial system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations and its real contribution to engineering.


2014 ◽  
Vol 24 (10) ◽  
pp. 1450127 ◽  
Author(s):  
Zhouchao Wei ◽  
Wei Zhang

This paper reports the finding of a four-dimensional (4D) non-Sil'nikov autonomous system with three quadratic nonlinearities, which exhibits some behavior previously unobserved: hidden hyperchaotic attractors with only one stable equilibrium. The algebraical form of the non-Sil'nikov chaotic attractor is very similar to the hyperchaotic Lorenz–Stenflo system but they are different and, in fact, nonequivalent in topological structures. Of particular interest is the fact this system has only one stable equilibrium, but can exhibit hidden hyperchaos, chaos, periodic orbit. Moreover, the coexistence of attracting sets can be obtained in the system for some parameter values and different initial conditions, such as hyperchaotic attractor and point, hyperchaotic attractor and period orbit. To further analyze the new system, the ultimate bound and positively invariant set for the modified hyperchaotic Lorenz–Stenflo system are also obtained. Moreover, the complete mathematical characterizations for 4D Hopf bifurcation are rigorously derived and studied.


Sign in / Sign up

Export Citation Format

Share Document