Infinitely presented permutation stable groups and invariant random subgroups of metabelian groups

2021 ◽  
pp. 1-36
Author(s):  
ARIE LEVIT ◽  
ALEXANDER LUBOTZKY

Abstract We prove that all invariant random subgroups of the lamplighter group L are co-sofic. It follows that L is permutation stable, providing an example of an infinitely presented such group. Our proof applies more generally to all permutational wreath products of finitely generated abelian groups. We rely on the pointwise ergodic theorem for amenable groups.

1975 ◽  
Vol 78 (3) ◽  
pp. 357-368 ◽  
Author(s):  
B. A. F. Wehrfritz

This paper is devoted to the construction of faithful representations of the automorphism group and the holomorph of an extension of an abelian group by some other group, the representations here being homomorphisms into certain restricted parts of the automorphism groups of smallish abelian groups. We apply these to two very specific cases, namely to finitely generated metabelian groups and to certain soluble groups of finite rank. We describe the applications first.


1970 ◽  
Vol 22 (4) ◽  
pp. 875-877 ◽  
Author(s):  
Narain Gupta

Let denote the variety of all groups which are extensions of a nilpotent-of-class-c group by a nilpotent-of-class-d group, and let denote the variety of all metabelian groups. The main result of this paper is the following theorem.THEOREM. Let be a subvariety of which does not contain . Then every -group is an extension of a group of finite exponent by a nilpotent group by a group of finite exponent. In particular, a finitely generated torsion-free -group is a nilpotent-by-finite group.This generalizes the main theorem of Ŝmel′kin [4], where the same result is proved for subvarieties of , where is the variety of abelian groups. See also Lewin and Lewin [2] for a related discussion.


Author(s):  
Michele Rossi ◽  
Lea Terracini

AbstractLet X be a $$\mathbb {Q}$$ Q -factorial complete toric variety over an algebraic closed field of characteristic 0. There is a canonical injection of the Picard group $$\mathrm{Pic}(X)$$ Pic ( X ) in the group $$\mathrm{Cl}(X)$$ Cl ( X ) of classes of Weil divisors. These two groups are finitely generated abelian groups; while the first one is a free group, the second one may have torsion. We investigate algebraic and geometrical conditions under which the image of $$\mathrm{Pic}(X)$$ Pic ( X ) in $$\mathrm{Cl}(X)$$ Cl ( X ) is contained in a free part of the latter group.


2011 ◽  
Vol 10 (03) ◽  
pp. 377-389
Author(s):  
CARLA PETRORO ◽  
MARKUS SCHMIDMEIER

Let Λ be a commutative local uniserial ring of length n, p be a generator of the maximal ideal, and k be the radical factor field. The pairs (B, A) where B is a finitely generated Λ-module and A ⊆B a submodule of B such that pmA = 0 form the objects in the category [Formula: see text]. We show that in case m = 2 the categories [Formula: see text] are in fact quite similar to each other: If also Δ is a commutative local uniserial ring of length n and with radical factor field k, then the categories [Formula: see text] and [Formula: see text] are equivalent for certain nilpotent categorical ideals [Formula: see text] and [Formula: see text]. As an application, we recover the known classification of all pairs (B, A) where B is a finitely generated abelian group and A ⊆ B a subgroup of B which is p2-bounded for a given prime number p.


2017 ◽  
Vol 39 (4) ◽  
pp. 889-897 ◽  
Author(s):  
ZOLTÁN BUCZOLICH

We show that $\unicode[STIX]{x1D714}(n)$ and $\unicode[STIX]{x1D6FA}(n)$, the number of distinct prime factors of $n$ and the number of distinct prime factors of $n$ counted according to multiplicity, are good weighting functions for the pointwise ergodic theorem in $L^{1}$. That is, if $g$ denotes one of these functions and $S_{g,K}=\sum _{n\leq K}g(n)$, then for every ergodic dynamical system $(X,{\mathcal{A}},\unicode[STIX]{x1D707},\unicode[STIX]{x1D70F})$ and every $f\in L^{1}(X)$, $$\begin{eqnarray}\lim _{K\rightarrow \infty }\frac{1}{S_{g,K}}\mathop{\sum }_{n=1}^{K}g(n)f(\unicode[STIX]{x1D70F}^{n}x)=\int _{X}f\,d\unicode[STIX]{x1D707}\quad \text{for }\unicode[STIX]{x1D707}\text{ almost every }x\in X.\end{eqnarray}$$ This answers a question raised by Cuny and Weber, who showed this result for $L^{p}$, $p>1$.


2011 ◽  
Vol 151 (1) ◽  
pp. 145-159 ◽  
Author(s):  
ALEXANDER I. BUFETOV ◽  
CAROLINE SERIES

AbstractWe use Series' Markovian coding for words in Fuchsian groups and the Bowen-Series coding of limit sets to prove an ergodic theorem for Cesàro averages of spherical averages in a Fuchsian group.


Author(s):  
BJÖRN SCHUSTER

For any fixed prime p and any non-negative integer n there is a 2(pn − 1)-periodic generalized cohomology theory K(n)*, the nth Morava K-theory. Let G be a finite group and BG its classifying space. For some time now it has been conjectured that K(n)*(BG) is concentrated in even dimensions. Standard transfer arguments show that a finite group enjoys this property whenever its p-Sylow subgroup does, so one is reduced to verifying the conjecture for p-groups. It is easy to see that it holds for abelian groups, and it has been proved for some non-abelian groups as well, namely groups of order p3 ([7]) and certain wreath products ([3], [2]). In this note we consider finite (non-abelian) 2-groups with maximal normal cyclic subgroup, i.e. dihedral, semidihedral, quasidihedral and generalized quaternion groups of order a power of two.


Sign in / Sign up

Export Citation Format

Share Document