scholarly journals Betti Numbers of Weighted Oriented Graphs

10.37236/9887 ◽  
2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Beata Casiday ◽  
Selvi Kara

Let $\mathcal{D}$ be a weighted oriented graph and $I(\mathcal{D})$ be its edge ideal. In this paper, we investigate the Betti numbers of $I(\mathcal{D})$ via upper-Koszul simplicial complexes, Betti splittings and the mapping cone construction. In particular, we provide recursive formulas for the Betti numbers of edge ideals of several classes of weighted oriented graphs. We also identify classes of weighted oriented graphs whose edge ideals have a unique extremal Betti number which allows us to compute the regularity and projective dimension for the identified classes. Furthermore, we characterize the structure of a weighted oriented graph $\mathcal{D}$ on $n$ vertices such that $\textrm{pdim } (R/I(\mathcal{D}))=n$ where $R=k[x_1,\ldots, x_n]$.

2019 ◽  
Vol 30 (01) ◽  
pp. 125-139
Author(s):  
Do Trong Hoang

We prove that [Formula: see text] for any staircase skew Ferrers graph [Formula: see text], where [Formula: see text] and [Formula: see text]. As a consequence, Ene et al. conjecture is confirmed to hold true for the Betti numbers in the last column of the Betti table in a particular case. An explicit formula for the unique extremal Betti number of the binomial edge ideal of some closed graphs is also given.


10.37236/7689 ◽  
2018 ◽  
Vol 25 (1) ◽  
Author(s):  
Jürgen Herzog ◽  
Giancarlo Rinaldo

We compute one of the distinguished extremal Betti number of the binomial edge ideal of a block graph, and classify all block graphs admitting precisely one extremal Betti number.


2019 ◽  
Vol 29 (03) ◽  
pp. 535-559 ◽  
Author(s):  
Huy Tài Hà ◽  
Kuei-Nuan Lin ◽  
Susan Morey ◽  
Enrique Reyes ◽  
Rafael H. Villarreal

Let [Formula: see text] be a weighted oriented graph and let [Formula: see text] be its edge ideal. Under a natural condition that the underlying (undirected) graph of [Formula: see text] contains a perfect matching consisting of leaves, we provide several equivalent conditions for the Cohen–Macaulayness of [Formula: see text]. We also completely characterize the Cohen–Macaulayness of [Formula: see text] when the underlying graph of [Formula: see text] is a bipartite graph. When [Formula: see text] fails to be Cohen–Macaulay, we give an instance where [Formula: see text] is shown to be sequentially Cohen–Macaulay.


Author(s):  
Rajib Sarkar

Let [Formula: see text] be a connected graph on the vertex set [Formula: see text]. Then [Formula: see text]. In this paper, we prove that if [Formula: see text] is a unicyclic graph, then the depth of [Formula: see text] is bounded below by [Formula: see text]. Also, we characterize [Formula: see text] with [Formula: see text] and [Formula: see text]. We then compute one of the distinguished extremal Betti numbers of [Formula: see text]. If [Formula: see text] is obtained by attaching whiskers at some vertices of the cycle of length [Formula: see text], then we show that [Formula: see text]. Furthermore, we characterize [Formula: see text] with [Formula: see text], [Formula: see text] and [Formula: see text]. In each of these cases, we classify the uniqueness of the extremal Betti number of these graphs.


Author(s):  
Ajay Kumar ◽  
Pavinder Singh ◽  
Rohit Verma

In this paper, we obtain a combinatorial formula for computing the Betti numbers in the linear strand of edge ideals of bipartite Kneser graphs. We deduce lower and upper bounds for regularity of powers of edge ideals of these graphs in terms of associated combinatorial data and show that the lower bound is attained in some cases. Also, we obtain bounds on the projective dimension of edge ideals of these graphs in terms of combinatorial data.


Author(s):  
Mousumi Mandal ◽  
Dipak Kumar Pradhan

Let [Formula: see text] be a weighted oriented graph with the underlying graph [Formula: see text] when vertices with non-trivial weights are sinks and [Formula: see text] be the edge ideals corresponding to [Formula: see text] and [Formula: see text] respectively. We give an explicit description of the symbolic powers of [Formula: see text] using the concept of strong vertex covers. We show that the ordinary and symbolic powers of [Formula: see text] and [Formula: see text] behave in a similar way. We provide a description for symbolic powers and Waldschmidt constant of [Formula: see text] for certain classes of weighted oriented graphs. When [Formula: see text] is a weighted oriented odd cycle, we compute [Formula: see text] and prove [Formula: see text] and show that equality holds when there is only one vertex with non-trivial weight.


10.37236/2349 ◽  
2012 ◽  
Vol 19 (2) ◽  
Author(s):  
Dariush Kiani ◽  
Sara Saeedi

We characterize all graphs whose binomial edge ideals have a linear resolution. Indeed, we show that complete graphs are the only graphs with this property. We also compute some graded components of the first Betti number of the binomial edge ideal of a graph with respect to the graphical terms. Finally, we give an upper bound for the Castelnuovo-Mumford regularity of the binomial edge ideal of a closed graph.


10.37236/8810 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Margherita Barile ◽  
Antonio Macchia

We present an explicit construction of minimal cellular resolutions for the edge ideals of forests, based on discrete Morse theory. In particular, the generators of the free modules are subsets of the generators of the modules in the Lyubeznik resolution. This procedure allows us to ease the computation of the graded Betti numbers and the projective dimension.


2017 ◽  
Vol 10 (03) ◽  
pp. 1750061
Author(s):  
Somayeh Moradi

In this paper, we study the regularity and the projective dimension of the Stanley–Reisner ring of a [Formula: see text]-decomposable simplicial complex and explain these invariants with a recursive formula. To this aim, the graded Betti numbers of decomposable monomial ideals which is the dual concept for [Formula: see text]-decomposable simplicial complexes are studied and an inductive formula for the Betti numbers is given. As a corollary, for a shellable simplicial complex [Formula: see text], a formula for the regularity of the Stanley–Reisner ring of [Formula: see text] is presented. Finally, for a chordal clutter [Formula: see text], an upper bound for [Formula: see text] is given in terms of the regularities of edge ideals of some chordal clutters which are minors of [Formula: see text].


2020 ◽  
Vol 30 (08) ◽  
pp. 1537-1554 ◽  
Author(s):  
Arvind Kumar

We classify generalized block graphs whose binomial edge ideals admit a unique extremal Betti number. We prove that the Castelnuovo–Mumford regularity of binomial edge ideals of generalized block graphs is bounded below by [Formula: see text], where [Formula: see text] is the number of minimal cut sets of the graph [Formula: see text] and obtain an improved upper bound for the regularity in terms of the number of maximal cliques and pendant vertices of [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document