fixed station
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 2)

H-INDEX

9
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Parames Chutima ◽  
Jurairat Chimrakhang

Purpose This paper aims to evaluate two operational modes of the worker allocation problem (WAP) in the multiple U-line system (MULS). Five objectives are optimised simultaneously for the most complicated operational modes, i.e. machine-dominant working and fixed-station walking. Besides, the benefits of using multiline workstations (MLWs) are investigated. Design/methodology/approach The elite non-dominated sorting differential evolutionary III (ENSDE III) algorithm is developed as a solution technique. Also, the largest remaining available time heuristic is proposed as a baseline in determining the number and utilisation of workers when the use of MLWs is not allowed. Findings ENSDE III outperforms the cutting-edged multi-objective evolutionary algorithms, i.e. multi-objective evolutionary algorithm based on decomposition and non-dominated sorting differential evolutionary III, under two key Pareto metrics, i.e. generational distance and inverted generational distance, regardless of the problem size. The best-found number of workers from ENSDE III is substantially lower than the upper bound. The MULS with MLWs requires fewer workers than the one without. Research limitations/implications Although this research has extended several issues in the basic model of multiple U-line systems, some assumptions were used to facilitate mathematical computation as follows. The U-line system in this research assumed that all lines were produced only a single product. Besides, all workers were well-trained to gain the same skill. These assumptions could be extended in the future. Practical implications The implication of this research is the benefits of multiline workstations (MLWs) used in the multiple U-line system. Instead of leaving each individual line to operate independently, all lines should be working in parallel through the use of MLWs to gain benefits in terms of worker reduction, balancing worker’s workload, higher system utilisation. Originality/value This research is the first to address the WAP in the MULS with machine-dominant working and fixed-station walking modes. Worker’s fatigue due to standing and walking while working is incorporated into the model. The novel ENSDE III algorithm is developed to optimise the multi-objective WAP in a Pareto sense. The benefits of exploiting MLWs are also illustrated.


2019 ◽  
Vol 11 (10) ◽  
pp. 2759 ◽  
Author(s):  
Chen-Yi Sun ◽  
Soushi Kato ◽  
Zhonghua Gou

In the urban environment, the urban heat island effect, the phenomenon of high temperature in the city relative to the suburbs, has become significant due to a large amount of artificial heat dissipation, rare green spaces, high building density, and a large surface material heat capacity. The study of the urban heat island effect has been carried out for many years. Even though many studies have evolved from the measurement and analysis stage to the improvement of the urban heat island effect, the measurement method is still the most important issue of the studies in this field. Basically, the measurement method of the urban heat island effect intensity has three types: remote sensing, mobile transect observation, and fixed station. In order to achieve the dual purpose of reducing research funding requirements and maintaining the accuracy of research results, this study proposes a way to combine mobile transect observation and fixed station. This study exploits the advantages of mobile transect observation and fixed station, and uses low-cost sensors to achieve the basic purpose of urban heat island effect research. First, in this study, low-cost sensors were mounted on mobile vehicles for more than ten mobile transect observations to identify relatively high temperature and low temperature regions in the city; meanwhile, the low-cost sensors were also placed in a simple fixed station to obtain long-term instantaneous urban temperature data. Furthermore, it is possible to analyze the 24-hour full-time variation of the urban heat island effect. Therefore, the results of this study can not only provide a reference for relevant researchers, but can also serve as an important criterion for government departments to establish an “urban heat island effect monitoring system” to achieve the goal of efficient use of the public budget.


2018 ◽  
Vol 17 ◽  
Author(s):  
Suqin Zhang ◽  
Changhua Fu ◽  
Xiuxia Zhang ◽  
Yi Zhang

2015 ◽  
Vol 35 (5) ◽  
pp. 942-957 ◽  
Author(s):  
Bai Li ◽  
Jie Cao ◽  
Jui-Han Chang ◽  
Carl Wilson ◽  
Yong Chen

2012 ◽  
Vol E95.B (10) ◽  
pp. 3270-3278 ◽  
Author(s):  
Junjie WU ◽  
Jianyu YANG ◽  
Yulin HUANG ◽  
Haiguang YANG ◽  
Lingjiang KONG

Sign in / Sign up

Export Citation Format

Share Document