Fire Technology
Latest Publications


TOTAL DOCUMENTS

2662
(FIVE YEARS 390)

H-INDEX

43
(FIVE YEARS 7)

Published By Springer-Verlag

1572-8099, 0015-2684

2022 ◽  
Author(s):  
Yinuo Huo ◽  
Qixing Zhang ◽  
Yang Jia ◽  
Dongcai Liu ◽  
Jinfu Guan ◽  
...  

2022 ◽  
Author(s):  
Wenyu Cai ◽  
Mohammed A. Morovat ◽  
Michael D. Engelhardt ◽  
Guo-Qiang Li

2022 ◽  
Author(s):  
João Carlos Viegas ◽  
Carlos Oliveira Costa ◽  
Bernardo P. B. Monteiro ◽  
Paulo Dias Pereira

2021 ◽  
Author(s):  
R. Font

AbstractSelf-heating of biomass by chemical oxidation, which can cause spontaneous ignition, is a safety and management concern. This process can be accelerated by aerobic fermentation and water vapor sorption. The chemical oxidation and water vapor sorption of grass were studied in a laboratory oven, measuring the variations in weight and the internal temperature of a sphere with grass within a flexible polymeric network. Both processes were simulated to prove that the proposed mathematical model could fit the experimental data. It was observed that the water vapor sorption capacity of the grass was high, so the experimental increase in the internal temperature of a spherical body was around 47 K, from 73°C to 120°C. This fact can be very important because the chemical oxidation of grass accelerates at high temperatures. For scaling, simulation programs were used to study the sorption and oxidation processes with an increase in internal temperature in spherical bodies and infinite plane slabs. These results can be used to obtain those of other geometric symmetries by interpolation. It was deduced that at 70°C and with vapor sorption, the ignition time can be around 3 days to 5 days, while without vapor sorption, the ignition times can be around 110 days to 140 days. For 35°C the ignition times with vapor sorption can be around 12 days to 18 days, while without vapor sorption the ignition times can be around 3700 days to 4500 days. These results can be of interest for warehouses of similar biomass and for forestry research and management groups of wildfires. Graphical Abstract


2021 ◽  
Author(s):  
Biao Zhou ◽  
Hideki Yoshioka ◽  
Takafumi Noguchi ◽  
Kai Wang ◽  
Xinyan Huang
Keyword(s):  

2021 ◽  
Author(s):  
Anna Sandinge ◽  
Per Blomqvist ◽  
Lars Schiøtt Sørensen ◽  
Anne Dederichs

AbstractAs material age, the durability, strength, and other mechanical properties are impacted. The lifespan of a material generally decreases when exposed to weathering conditions such as wind, temperature, humidity, and light. It is important to have knowledge of how materials age and how the material properties are affected. Regarding materials´ fire behaviour and the effect of ageing on these properties, the knowledge is limited. The research questions of the current work are: Are the fire properties of composite materials affected by ageing? And if so, how is it affected? The study is on material at Technology Readiness Level 9 (TRL). In this study, three composite fibre laminates developed for marine applications were exposed to accelerated ageing. Two different ageing conditions were selected, thermal ageing with an increased temperature of 90°C and moisture ageing in a moderately increased temperature of 40°C and a relative humidity of 90%. Samples were collected after one, two and four weeks of ageing. The reaction-to-fire properties after ageing was evaluated using the ISO 5660–1 cone calorimeter and the EN ISO 5659–2 smoke chamber with FTIR gas analysis. The test results showed that the fire behaviour was affected. Two of the composite laminates, both phenolic/basalt composites, showed a deteriorated fire behaviour from the thermal ageing and the third composite laminate, a PFA/glass fibre composite, showed an improved fire behaviour both for thermal and moisture ageing. The smoke toxicity was affected by the accelerated ageing, especially for the PFA/glass fibre composite that showed a higher production of CO and HCN, both for the thermal aged and the moisture aged samples.


Sign in / Sign up

Export Citation Format

Share Document