vortex kinematics
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2017 ◽  
Vol 65 ◽  
pp. 368-383 ◽  
Author(s):  
Grégory Pinon ◽  
Gaële Perret ◽  
Lei Cao ◽  
Adrien Poupardin ◽  
Jérôme Brossard ◽  
...  

Author(s):  
Charles-Henri Bruneau ◽  
Emmanuel Creuse´ ◽  
Delphine Depeyras ◽  
Patrick Gillie´ron ◽  
Iraj Mortazavi

The aim of this work is to analyse one of the mechanisms that contributes to the drag forces, namely the distance of the vortices to the back wall of a bluff body. The study shows the strong relationship between this distance and the pressure forces at the back. Indeed, the active control processes modify the trajectory of the vortices to accelerate their removal from the wall and consequently reduce the drag coefficient.


2001 ◽  
Vol 123 (4) ◽  
pp. 272-281 ◽  
Author(s):  
Scott J. Schreck ◽  
Michael C. Robinson ◽  
M. Maureen Hand ◽  
David A. Simms

Horizontal axis wind turbines routinely suffer significant time varying aerodynamic loads that adversely impact structures, mechanical components, and power production. As lighter and more flexible wind turbines are designed to reduce overall cost of energy, greater accuracy and reliability will become even more crucial in future aerodynamics models. However, to render calculations tractable, current modeling approaches admit various approximations that can degrade model predictive accuracy. To help understand the impact of these modeling approximations and improve future models, the current effort seeks to document and comprehend the vortex kinematics for three-dimensional, unsteady, vortex dominated flows occurring on horizontal axis wind turbine blades during non-zero yaw conditions. To experimentally characterize these flows, the National Renewable Energy Laboratory Unsteady Aerodynamics Experiment turbine was erected in the NASA Ames 80 ft×120 ft wind tunnel. Then, under strictly-controlled inflow conditions, turbine blade surface pressures and local inflow velocities were acquired at multiple radial locations. Surface pressure histories and normal force records were used to characterize dynamic stall vortex kinematics and normal forces. Stall vortices occupied approximately two-thirds of the aerodynamically active blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied dramatically along the blade radius, yielding pronounced dynamic stall vortex deformation. Analysis of these data revealed systematic alterations to vortex kinematics due to changes in test section speed, yaw error, and blade span location.


Sign in / Sign up

Export Citation Format

Share Document