Blade Dynamic Stall Vortex Kinematics for a Horizontal Axis Wind Turbine in Yawed Conditions*

2001 ◽  
Vol 123 (4) ◽  
pp. 272-281 ◽  
Author(s):  
Scott J. Schreck ◽  
Michael C. Robinson ◽  
M. Maureen Hand ◽  
David A. Simms

Horizontal axis wind turbines routinely suffer significant time varying aerodynamic loads that adversely impact structures, mechanical components, and power production. As lighter and more flexible wind turbines are designed to reduce overall cost of energy, greater accuracy and reliability will become even more crucial in future aerodynamics models. However, to render calculations tractable, current modeling approaches admit various approximations that can degrade model predictive accuracy. To help understand the impact of these modeling approximations and improve future models, the current effort seeks to document and comprehend the vortex kinematics for three-dimensional, unsteady, vortex dominated flows occurring on horizontal axis wind turbine blades during non-zero yaw conditions. To experimentally characterize these flows, the National Renewable Energy Laboratory Unsteady Aerodynamics Experiment turbine was erected in the NASA Ames 80 ft×120 ft wind tunnel. Then, under strictly-controlled inflow conditions, turbine blade surface pressures and local inflow velocities were acquired at multiple radial locations. Surface pressure histories and normal force records were used to characterize dynamic stall vortex kinematics and normal forces. Stall vortices occupied approximately two-thirds of the aerodynamically active blade span and persisted for nearly one-fourth of the blade rotation cycle. Stall vortex convection varied dramatically along the blade radius, yielding pronounced dynamic stall vortex deformation. Analysis of these data revealed systematic alterations to vortex kinematics due to changes in test section speed, yaw error, and blade span location.

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 505
Author(s):  
Muhammad Salman Siddiqui ◽  
Muhammad Hamza Khalid ◽  
Abdul Waheed Badar ◽  
Muhammed Saeed ◽  
Taimoor Asim

The reliance on Computational Fluid Dynamics (CFD) simulations has drastically increased over time to evaluate the aerodynamic performance of small-scale wind turbines. With the rapid variability in customer demand, industrial requirements, economic constraints, and time limitations associated with the design and development of small-scale wind turbines, the trade-off between computational resources and the simulation’s numerical accuracy may vary significantly. In the context of wind turbine design and analysis, high fidelity simulation under full geometric and numerical complexity is more accurate but pose significant demands from a computational standpoint. There is a need to understand and quantify performance deterioration of high fidelity simulations under reduced geometric or numerical approximation on a single small scale turbine model. In the present work, the flow past a small-scale Horizontal Axis Wind Turbine (HAWT) was simulated under various geometric and numerical configurations. The geometric complexity was varied based on stationary and rotating turbine conditions. In the stationary case, simple 2D airfoil, 2.5D blade, 3D blade sections are evaluated, while rotational effects are introduced for the configuration 3D blade, rotor only, and the full-scale wind turbine with and without the inclusion of a nacelle and tower. In terms of numerical complexity, the Single Reference Frame (SRF), Multiple Reference Frames (MRF), and the Sliding Meshing Interface (SMI) is analyzed over Tip Speed Ratios (TSR) of 3, 6, 10. The quantification of aerodynamic coefficients of the blade (Cl, Cd) and turbine (Cp, Ct) was conducted along with the discussion on wake patterns in comparison with experimental data.


Author(s):  
Manoj Kumar Chaudhary ◽  
S Prakash

This paper aims to optimize and investigate the small horizontal axis wind turbine blades at low wind speed. The objective of this research work is to explain the design method based on BEM theory for 0.2 m blade rotors with constant, variable and linear chord with twisted blade geometry. MATLAB and Xfoil programs were used for BEM principles and wind turbines with SG6043 airfoil. A numerical and experimental study was carried out to examine the impact of rotor solidity from 0.057 to 0.207 and the number of blades from 3 to 7 in this research work. The experimental blades were developed by using the 3D printing additive manufacturing technique. The investigation of the rotors has been done in an open wind tunnel, at wind speed from 2 to 8 m/s. The initial investigation range included tip speed ratios from 2 to 8, and angle of attacks from 2 to 20°. Later on these parameters were varied in Matlab and Xfoil software optimization and investigation of the power coefficient, blade geometry, number of blades and blade pitch angle. It was found that the rotor solidity 0.055 to 0.085 displayed better performances.


2009 ◽  
Vol 131 (3) ◽  
Author(s):  
S. Gómez-Iradi ◽  
R. Steijl ◽  
G. N. Barakos

This paper demonstrates the potential of a compressible Navier–Stokes CFD method for the analysis of horizontal axis wind turbines. The method was first validated against experimental data of the NREL/NASA-Ames Phase VI (Hand, et al., 2001, “Unsteady Aerodynamics Experiment Phase, VI: Wind Tunnel Test Configurations and Available Data Campaigns,” NREL, Technical Report No. TP-500-29955) wind-tunnel campaign at 7 m/s, 10 m/s, and 20 m/s freestreams for a nonyawed isolated rotor. Comparisons are shown for the surface pressure distributions at several stations along the blades as well as for the integrated thrust and torque values. In addition, a comparison between measurements and CFD results is shown for the local flow angle at several stations ahead of the wind turbine blades. For attached and moderately stalled flow conditions the thrust and torque predictions are fair, though improvements in the stalled flow regime are necessary to avoid overprediction of torque. Subsequently, the wind-tunnel wall effects on the blade aerodynamics, as well as the blade/tower interaction, were investigated. The selected case corresponded to 7 m/s up-wind wind turbine at 0 deg of yaw angle and a rotational speed of 72 rpm. The obtained results suggest that the present method can cope well with the flows encountered around wind turbines providing useful results for their aerodynamic performance and revealing flow details near and off the blades and tower.


Author(s):  
Ibtissem Barkat ◽  
Abdelouahab Benretem ◽  
Fawaz Massouh ◽  
Issam Meghlaoui ◽  
Ahlem Chebel

This article aims to study the forces applied to the rotors of horizontal axis wind turbines. The aerodynamics of a turbine are controlled by the flow around the rotor, or estimate of air charges on the rotor blades under various operating conditions and their relation to the structural dynamics of the rotor are critical for design. One of the major challenges in wind turbine aerodynamics is to predict the forces on the blade as various methods, including blade element moment theory (BEM), the approach that is naturally adapted to the simulation of the aerodynamics of wind turbines and the dynamic and models (CFD) that describes with fidelity the flow around the rotor. In our article we proposed a modeling method and a simulation of the forces applied to the horizontal axis wind rotors turbines using the application of the blade elements method to model the rotor and the vortex method of free wake modeling in order to develop a rotor model, which can be used to study wind farms. This model is intended to speed up the calculation, guaranteeing a good representation of the aerodynamic loads exerted by the wind.


Author(s):  
M. Sergio Campobasso ◽  
Mohammad H. Baba-Ahmadi

This paper presents the numerical models underlying the implementation of a novel harmonic balance compressible Navier-Stokes solver with low-speed preconditioning for wind turbine unsteady aerodynamics. The numerical integration of the harmonic balance equations is based on a multigrid iteration, and, for the first time, a numerical instability associated with the use of such an explicit approach in this context is discussed and resolved. The harmonic balance solver with low-speed preconditioning is well suited for the analyses of several unsteady periodic low-speed flows, such as those encountered in horizontal axis wind turbines. The computational performance and the accuracy of the technology being developed are assessed by computing the flow field past two sections of a wind turbine blade in yawed wind with both the time- and frequency-domain solvers. Results highlight that the harmonic balance solver can compute these periodic flows more than 10 times faster than its time-domain counterpart, and with an accuracy comparable to that of the time-domain solver.


Sign in / Sign up

Export Citation Format

Share Document