completely regular code
Recently Published Documents


TOTAL DOCUMENTS

3
(FIVE YEARS 0)

H-INDEX

0
(FIVE YEARS 0)



2016 ◽  
Vol Vol. 17 no. 3 (PRIMA 2013) ◽  
Author(s):  
Jacobus Koolen ◽  
Woo Sun Lee ◽  
William Martin ◽  
Hajime Tanaka

International audience In this paper, we explore completely regular codes in the Hamming graphs and related graphs. Experimental evidence suggests that many completely regular codes have the property that the eigenvalues of the code are in arithmetic progression. In order to better understand these "arithmetic completely regular codes", we focus on cartesian products of completely regular codes and products of their corresponding coset graphs in the additive case. Employing earlier results, we are then able to prove a theorem which nearly classifies these codes in the case where the graph admits a completely regular partition into such codes (e.g, the cosets of some additive completely regular code). Connections to the theory of distance-regular graphs are explored and several open questions are posed.



10.37236/309 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
M. Cámara ◽  
J. Fàbrega ◽  
M. A. Fiol ◽  
E. Garriga

Given a simple connected graph $\Gamma$ and a subset of its vertices $C$, the pseudo-distance-regularity around $C$ generalizes, for not necessarily regular graphs, the notion of completely regular code. We then say that $C$ is a completely pseudo-regular code. Up to now, most of the characterizations of pseudo-distance-regularity has been derived from a combinatorial definition. In this paper we propose an algebraic (Terwilliger-like) approach to this notion, showing its equivalence with the combinatorial one. This allows us to give new proofs of known results, and also to obtain new characterizations which do not depend on the so-called $C$-spectrum of $\Gamma$, but only on the positive eigenvector of its adjacency matrix. Along the way, we also obtain some new results relating the local spectra of a vertex set and its antipodal. As a consequence of our study, we obtain a new characterization of a completely regular code $C$, in terms of the number of walks in $\Gamma$ with an endvertex in $C$.



Sign in / Sign up

Export Citation Format

Share Document