singularity category
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

2022 ◽  
pp. 1-20
Author(s):  
CRIS NEGRON ◽  
JULIA PEVTSOVA

Abstract We introduce an infinite variant of hypersurface support for finite-dimensional, noncommutative complete intersections. We show that hypersurface support defines a support theory for the big singularity category $\operatorname {Sing}(R)$ , and that the support of an object in $\operatorname {Sing}(R)$ vanishes if and only if the object itself vanishes. Our work is inspired by Avramov and Buchweitz’ support theory for (commutative) local complete intersections. In the companion piece [27], we employ hypersurface support for infinite-dimensional modules, and the results of the present paper, to classify thick ideals in stable categories for a number of families of finite-dimensional Hopf algebras.



2021 ◽  
Vol 6 (3) ◽  
pp. 381-424
Author(s):  
Nebojsa Pavic ◽  
Evgeny Shinder


Author(s):  
Sondre Kvamme

Abstract For an exact category $${{\mathcal {E}}}$$ E with enough projectives and with a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory, we show that the singularity category of $${{\mathcal {E}}}$$ E admits a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory. To do this we introduce cluster tilting subcategories of left triangulated categories, and we show that there is a correspondence between cluster tilting subcategories of $${{\mathcal {E}}}$$ E and $${\underline{{{\mathcal {E}}}}}$$ E ̲ . We also deduce that the Gorenstein projectives of $${{\mathcal {E}}}$$ E admit a $$d\mathbb {Z}$$ d Z -cluster tilting subcategory under some assumptions. Finally, we compute the $$d\mathbb {Z}$$ d Z -cluster tilting subcategory of the singularity category for a finite-dimensional algebra which is not Iwanaga–Gorenstein.



2020 ◽  
pp. 1-24
Author(s):  
DAVE BENSON ◽  
SRIKANTH B. IYENGAR ◽  
HENNING KRAUSE ◽  
JULIA PEVTSOVA

A duality theorem for the singularity category of a finite dimensional Gorenstein algebra is proved. It complements a duality on the category of perfect complexes, discovered by Happel. One of its consequences is an analogue of Serre duality, and the existence of Auslander–Reiten triangles for the $\mathfrak{p}$ -local and $\mathfrak{p}$ -torsion subcategories of the derived category, for each homogeneous prime ideal $\mathfrak{p}$ arising from the action of a commutative ring via Hochschild cohomology.



Author(s):  
Jiangsheng Hu ◽  
Yuxian Geng ◽  
Jinyong Wu ◽  
Huanhuan Li

Let [Formula: see text] be a commutative Noetherian ring and [Formula: see text] a semidualizing [Formula: see text]-module. We obtain an exact structure [Formula: see text] and prove that the full subcategory [Formula: see text] of [Formula: see text] is a Frobenius category with [Formula: see text] the subcategory of projective and injective objects, where [Formula: see text] and [Formula: see text] (respectively, [Formula: see text]) is the subcategory of [Formula: see text]-Gorenstein flat (respectively, [Formula: see text]-flat [Formula: see text]-cotorsion) [Formula: see text]-modules. Then the stable category [Formula: see text] of [Formula: see text] and the singularity category [Formula: see text] of [Formula: see text] are also considered. As a consequence, we get that there is a Buchweitz’s equivalence [Formula: see text] if and only if [Formula: see text] is a part of some AB-context.



2019 ◽  
Vol 19 (06) ◽  
pp. 2050117
Author(s):  
Tianya Cao ◽  
Wei Ren

Firstly, we compare the bounded derived categories with respect to the pure-exact and the usual exact structures, and describe bounded derived category by pure-projective modules, under a fairly strong assumption on the ring. Then, we study Verdier quotient of bounded pure derived category modulo the bounded homotopy category of pure-projective modules, which is called a pure singularity category since we show that it reflects the finiteness of pure-global dimension of rings. Moreover, invariance of pure singularity in a recollement of bounded pure derived categories is studied.



2019 ◽  
Vol 27 (4) ◽  
pp. 427-433
Author(s):  
Ren Wang
Keyword(s):  


2018 ◽  
Vol 356 (11-12) ◽  
pp. 1106-1111 ◽  
Author(s):  
Bernhard Keller


2018 ◽  
Vol 69 (3) ◽  
pp. 1015-1033 ◽  
Author(s):  
Xiao-Wu Chen


Sign in / Sign up

Export Citation Format

Share Document