annual precipitation amount
Recently Published Documents


TOTAL DOCUMENTS

2
(FIVE YEARS 1)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 9 ◽  
Author(s):  
Minggang Li ◽  
Yong Zhao ◽  
Yang Li ◽  
Xin Zhou ◽  
Shaobo Zhang

Based on daily measured data from 25 stations in Xinjiang Province from 1963 to 2017, we discuss the statistical characteristics, linear trends, and temporal concentration of slight precipitation (SP) and extreme precipitation (EP) events, and consider relationships between SP and EP events and daily mean temperature. The results show that SP events contribute strongly to the total annual number of wet days, and that EP events contribute strongly to the total annual precipitation amount. In consist with the decrease in SP events and the increase in EP events over the 55-year period, the contribution of SP events to total annual number of wet days has decreased significantly while the contribution of EP events to total annual precipitation amount has increased significantly. SP event usually distributes through most months of the year, whereas EP event usually concentrates in summer (JJA). Influenced by the negative trends for SP events frequency and positive trends of EP events frequency during recent decades, the concentration degree for SP and EP events have significantly increased and decreased, respectively. Distinct differences are found between the relationships of SP events and EP events to daily mean temperature. The daily mean temperature recorded at the stations in Northern Xinjiang on days with SP events was between –35°C and +34°C, and for EP events ranged from –21°C to +30°C. Regionally averaged curves for the change in SP and EP event frequency with temperature have bimodal and unimodal distributions, respectively. Trends for daily mean temperatures and for the frequency of SP events at different temperatures agree well over nearly the entire temperature range, while trends for daily mean temperatures and for the frequency of EP events at different temperatures are not always consistent. These results will help to improve our understanding of the characteristics and variability of precipitation in arid regions within the context of climate warming.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Guohua Zhang ◽  
Jian Guan ◽  
Jingyi Ai ◽  
Jiangtao Zhang ◽  
Xiaoqing Jin

The climate characteristics of high-temperature (37°C and above) and muggy days in the Beijing-Tianjin-Hebei region over the past 30 years from 1981 to 2010 are analyzed. The results are summarized as follows. During this period, the years with the most number of high-temperature days are 1997–2005 and 2009 in the Beijing-Tianjin-Hebei region, while high-temperature extremes appear in 1999, 2000, 2002, 2009, and 2010. This disparity between the years with high-temperature extremes and the years with the most number of high-temperature days is located primarily in the central and southern cities of the Beijing-Tianjin-Hebei region. High-temperature extremes in the southern cities appear in June and July, while high-temperature extremes in the other cities appear in July. The years with the most number of muggy days are 1994, 1997, 1998, 2000, and 2010 in the Beijing-Tianjin-Hebei region, but the years with the extreme muggy conditions appear in 1981, 2002, 2005, and 2010. The most number of muggy days are in July, and the muggy days in July and August account for about 90% of the entire summer. Over the 30-year period, no apparent changes are observed in the number of days with precipitation and the annual precipitation amount.


Sign in / Sign up

Export Citation Format

Share Document