Extreme Precipitation
Recently Published Documents


TOTAL DOCUMENTS

2207
(FIVE YEARS 1568)

H-INDEX

74
(FIVE YEARS 33)

2021 ◽  
Vol 16 (4) ◽  
pp. 85-101
Author(s):  
Alexandra Berényi ◽  
◽  
Rita Pongrácz ◽  
Judit Bartholy ◽  
◽  
...  

The aim of our study is to analyse the spatial patterns and temporal trends of average and extreme precipitation events in a few selected plain regions between 1951 and 2019. Besides the Great Hungarian Plain we chose two plain regions located in the southern part of the continent (i.e. the Po Valley and the Romanian Plain) with the purpose of comparing similar geographical regions, and creating a scientific basis to comprehensively analyse the effects of climate change on economy, society, and nature. For choosing the plains, objective criteria were used, namely, (i) the elevation remains under 200 m throughout the defined area, and (ii) the difference between the neighbouring grid points within the plain region does not exceed 50 m. The analysis of extreme precipitation events was performed for annual periods by calculating 17 climate indices. Based on our research of the past, there is a clear increase in the frequency and intensity of extreme precipitation events, in the length of dry periods as well as in the occurrence of extreme weather events.


2021 ◽  
Author(s):  
Quang-Van Doan ◽  
Fei Chen ◽  
Hiroyuki Kusaka ◽  
Anurag Dipankar ◽  
Ansar Khan ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1522
Author(s):  
Xiaoxia Yang ◽  
Juan Wu ◽  
Jia Liu ◽  
Xuchun Ye

In this study, 11 extreme precipitation indices were selected to examine the spatiotemporal variation of extreme precipitation in the Poyang Lake Basin during 1960–2017. The responses of extreme precipitation indices to El Nino/Southern Oscillation (ENSO) events of different Pacific Ocean areas were further investigated. The results show that the temperature in the Poyang Lake Basin has increased significantly since the 1990s, and the inter-decadal precipitation fluctuated. Most extreme precipitation indices showed an increasing trend with abrupt changes occurring around 1991. Spatially, most of the extreme precipitation indices decreased from northeast to southwest. The increasing trend of most indices in the center and south of the basin was relatively prominent. The linear correlations between the extreme precipitation indices and Nino 1 + 2 were the most significant. On the timescale of 2–6 years, a common oscillation period between the extreme precipitation of the basin and the four ENSO indices can be observed. After 2010, the positive correlation between the precipitation of the Poyang Lake Basin and the SST (sea surface temperature) anomalies in the equatorial Pacific increased significantly. Additionally, annual total wet–day precipitation in most areas of the Poyang Lake Basin increased with varying degrees in warm ENSO years. The results of this study will improve the understanding of the complex background and driving mechanism of flood disasters in the Poyang Lake Basin.


2021 ◽  
Author(s):  
Ju Liang ◽  
Mou Leong Tan ◽  
Matthew Hawcroft ◽  
Jennifer L. Catto ◽  
Kevin I. Hodges ◽  
...  

AbstractThis study investigates the ability of 20 model simulations which contributed to the CMIP6 HighResMIP to simulate precipitation in different monsoon seasons and extreme precipitation events over Peninsular Malaysia. The model experiments utilize common forcing but are run with different horizontal and vertical resolutions. The impact of resolution on the models’ abilities to simulate precipitation and associated environmental fields is assessed by comparing multi-model ensembles at different resolutions with three observed precipitation datasets and four climate reanalyses. Model simulations with relatively high horizontal and vertical resolution exhibit better performance in simulating the annual cycle of precipitation and extreme precipitation over Peninsular Malaysia and the coastal regions. Improvements associated with the increase in horizontal and vertical resolutions are also found in the statistical relationship between precipitation and monsoon intensity in different seasons. However, the increase in vertical resolution can lead to a reduction of annual mean precipitation compared to that from the models with low vertical resolutions, associated with an overestimation of moisture divergence and underestimation of lower-tropospheric vertical ascent in the different monsoon seasons. This limits any improvement in the simulation of precipitation in the high vertical resolution experiments, particularly for the Southwest monsoon season.


2021 ◽  
Vol 9 ◽  
Author(s):  
Mengqi Zhang ◽  
Jianqi Sun

Spring extreme precipitation poses great challenges to agricultural production and economic development in southern China. From the perspective of prediction, the relationship between spring extreme precipitation frequency (SEPF) in southern China and preceding autumn snow cover over Eurasia is investigated. The results indicate that the southern China SEPF is significantly correlated with October snow cover in central Siberia. Corresponding to reduced October snow cover, the vertical propagation of planetary waves is suppressed, which leads to a strengthened stratospheric polar vortex from October to following December. The signal of the anomalous stratospheric polar vortex propagates downward to the surface, contributing to a positive North Atlantic Oscillation (NAO)-like pattern in December. The southwesterlies in the northern Eurasia-eastern Arctic associated with the positive NAO induce sea ice loss in the Barents–Kara seas in January–February, which then tends to enhance the vertical propagation of planetary waves by constructively interfering with the climatological wavenumber-1 component. Therefore, the stratosphere polar vortex is significantly weakened in spring, which further contributes to a negative Arctic Oscillation (AO)-like pattern in the troposphere. The negative spring AO is related to an anomalous cyclone in East Asia, which induces upward motion and moisture convergence in southern China, consequently providing favorable dynamic and moisture conditions for extreme precipitation in the region. The snow cover signal in central Siberia in the preceding October provides a potential source for the prediction of spring extreme precipitation variability in southern China with two seasons in advance.


2021 ◽  
Author(s):  
Kang He ◽  
Qing Yang ◽  
Xinyi Shen ◽  
Emmanouil N. Anagnostou

Abstract. In this communication, we present the exposure of agriculture lands to the flooding caused by extreme precipitation in western Europe from 12th to 15th of July 2021. Overlaying the flood inundation maps derived from the near-real-time RAdar-Produced Inundation Diary (RAPID) system on the CORINE land cover map we estimate a 2470 km2 area affected by the flooding, with 57 % representing agricultural land. Among the inundated agricultural land, 36 % of the area is pastures while 33 % is arable land. Most agricultural flood exposure is found in south-eastern France (~1680 km2) along Rhône River and the coastal area of Marseille and Montpellier.


2021 ◽  
Author(s):  
Nabi Mirzaei ◽  
Bohloul Alijani ◽  
Zahra Hejazizadeh ◽  
Mohammad Darand ◽  
Mohammad Hossein Naserzadeh

Abstract This study analyzed the impact of spatial variation in westerlies on widespread and heavy precipitation over Iran using the sinuosity index. Four groups of datasets were used for the period from 1979 to 2020, containing the gridded geopotential height, specific humidity, precipitation data, and the Arctic Oscillation (AO) and North Atlantic Oscillation (NAO) teleconnection patterns. The results demonstrate that the trend in sinuosity variation has been decreased during the 1979-1999 sub period but increased from 2000 to 2020. The analysis of the trend in cumulative sinuosity for the above two sub periods indicates that sinuosity rate has been greater in the latter than in the former all over the year except in October. The overall trend in sinuosity variation exhibits an increase by 0.0018, significantly. Maximum sinuosity can be observed in January, March, and December, and minimum sinuosity is seen in October. The relationship between heavy precipitation and sinuosity suggests that daily precipitation has increased by 3 mm with a rise of 0.2 in the value of sinuosity, monthly precipitation by 10 mm, and the annual value by 38 mm. Thus, the rate of correlation between sinuosity and precipitation over Iran equals to 0.74. Sinuosity increase in the 0-70° E range indicates an increase in wave depth and the occurrence of a cut off low. The most important factor in the persistence of widespread extreme precipitation has been the formation of these lows in the 20-40°E and 20-35°N ranges.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1492
Author(s):  
Sunilkumar Khadgarai ◽  
Vinay Kumar ◽  
Prabodha Kumar Pradhan

Spatial and temporal variability in precipitation has been dramatically changed due to climate variability and climate change over the global domain. Increasing in extreme precipitation events are pronounced in various regions, including monsoon Asia (MA) in recent decades. The present study evaluated precipitation variability in light of intensity, duration, and frequency with several extreme precipitation climate change indices developed by the Expert Team on Climate Change Detection Indices (ETCCDI) over the MA region. This study uses an improved version (APHRO_V1901) of the Asian Precipitation Highly Resolved Observation Data Integration Towards Evaluation of extreme events (APHRODITE-2) gridded rainfall product. Results showed that the spatial variability of the extreme precipitation climate change indices is reflected in the annual mean rainfall distribution in MA. Maximum one-day precipitation (R × 1) and precipitation contributed from extremes (R95) depict a peak in decadal mean rainfall values over topography regions. A significant positive trend in R × 1 (with a slope of 0.3 mm/yr) and precipitation greater than the 95th percentile (R95: with a slope of 0.5 mm/yr) are predominantly observed in decadal trends in regional average extreme precipitation climate change indices over MA. Maritime continental countries exhibit an inclined trend in R10, whereas central Asian arid regions show a decreasing tendency in continuous dry days (CDD). The positive trend in R95 is observed over central India, the monsoon region in China, countries that reside over the equator and some parts of Japan, and the Philippines. When comparing the influence of surface temperature (T) and total column water vapor (TCW) on precipitation climate change indices, TCW seems to be a crucial attributor to climate change indices meridional variability. The mutual correlation analysis depicts that precipitation contributed from extremes (R95) strongly correlates in terms of temporal variability with all extreme precipitation indices. Among various global circulation patterns, the prevalent conditions of sea surface temperature (SST) over the equatorial Pacific Ocean have a significant influence on decadal variability in extreme precipitation climate change indices. R10 and R95 possess a relatively significant correlation (0.86 and 0.91) with the Southern Oscillation Index. The maximum number of consecutive dry days (CDD) shows an increasing trend with a positive phase of the North Atlantic Oscillation Index.


Sign in / Sign up

Export Citation Format

Share Document