marangoni flows
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 8)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Anne‐Déborah C. Nguindjel ◽  
Peter A. Korevaar


2021 ◽  
Author(s):  
Anne‐Déborah C. Nguindjel ◽  
Peter A. Korevaar


2021 ◽  
Vol 9 ◽  
Author(s):  
Beomseok Cha ◽  
Woohyuk Kim ◽  
Giseong Yoon ◽  
Hyunwoo Jeon ◽  
Jinsoo Park

Digital microfluidics based on sessile droplets has emerged as a promising technology for various applications including biochemical assays, clinical diagnostics, and drug screening. Digital microfluidic platforms provide an isolated microenvironment to prevent cross-contamination and require reduced sample volume. Despite these advantages, the droplet-based technology has the inherent limitation of the quiescent flow conditions at low Reynolds number, which causes mixing samples confined within the droplets to be challenging. Recently, solutal Marangoni flows induced by volatile liquids have been utilized for sessile droplet mixing to address the above-mentioned limitation. The volatile liquid vaporized near a sessile droplet induces a surface tension gradient throughout the droplet interface, leading to vortical flows inside a droplet. This Marangoni flow-based droplet mixing method does not require an external energy source and is easy to operate. However, this passive method requires a comparably long time of a few tens of seconds for complete mixing since it depends on the natural evaporation of the volatile liquid. Here, we propose an improved ultrasound-induced heating method based on a nature-inspired ultrasound-absorbing layer and apply it to enhance solutal Marangoni effect. The heater consists of an interdigital transducer deposited on a piezoelectric substrate and a silver nanowire-polydimethylsiloxane composite as an ultrasound-absorbing layer. When the transducer is electrically actuated, surface acoustic waves are produced and immediately absorbed in the composite layer by viscoelastic wave attenuation. The conversion from acoustic to thermal energy occurs, leading to rapid heating. The heating-mediated enhanced vaporization of a volatile liquid accelerates the solutal Marangoni flows and thus enables mixing high-viscosity droplets, which is unachievable by the passive solutal Marangoni effect. We theoretically and experimentally investigated the enhanced Marangoni flow and confirmed that rapid droplet mixing can be achieved within a few seconds. The proposed heater-embedded sessile droplet mixing platform can be fabricated in small size and easily integrated with other digital microfluidic platforms. Therefore, we expect that the proposed sample mixing method can be utilized for various applications in digital microfluidics and contribute to the advancements in the medical and biochemical fields.



2021 ◽  
Author(s):  
Anne-Déborah C. Nguindjel ◽  
Peter Korevaar


Author(s):  
M.A. Al-Muzaiqer ◽  
N.A. Ivanova ◽  
V.M. Fliagin ◽  
P.V. Lebedev-Stepanov


2021 ◽  
Vol 44 (2) ◽  
Author(s):  
Martin Wittmann ◽  
Mihail N. Popescu ◽  
Alvaro Domínguez ◽  
Juliane Simmchen

Abstract For monolayers of chemically active particles at a fluid interface, collective dynamics is predicted to arise owing to activity-induced Marangoni flow even if the particles are not self-propelled. Here, we test this prediction by employing a monolayer of spherically symmetric active $$\hbox {TiO}_2$$ TiO 2 particles located at an oil–water interface with or without addition of a nonionic surfactant. Due to the spherical symmetry, an individual particle does not self-propel. However, the gradients produced by the photochemical fuel degradation give rise to long-ranged Marangoni flows. For the case in which surfactant is added to the system, we indeed observe the emergence of collective motion, with dynamics dependent on the particle coverage of the monolayer. The experimental observations are discussed within the framework of a simple theoretical mean-field model. Graphic abstract



Author(s):  
Junil Ryu ◽  
Junkyu Kim ◽  
Jonghyeok Park ◽  
Hyoungsoo Kim


2021 ◽  
Vol 33 (1) ◽  
pp. 012112
Author(s):  
V. Chandran Suja ◽  
A. Hadidi ◽  
A. Kannan ◽  
G. G. Fuller


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 249
Author(s):  
Goce Koleski ◽  
Thomas Bickel

We consider the creeping flow of a Newtonian fluid in a hemispherical region. In a domain with spherical or nearly spherical geometry, the solution of the Stokes equation can be expressed as a series of spherical harmonics. However, the original Lamb solution is not complete when the flow is restricted to a semi-infinite space. The general solution in hemispherical geometry is then constructed explicitly. As an application, we discuss the solutions of Marangoni flows due to a local source at the liquid–air interface.





Sign in / Sign up

Export Citation Format

Share Document