scholarly journals Active spheres induce Marangoni flows that drive collective dynamics

2021 ◽  
Vol 44 (2) ◽  
Author(s):  
Martin Wittmann ◽  
Mihail N. Popescu ◽  
Alvaro Domínguez ◽  
Juliane Simmchen

Abstract For monolayers of chemically active particles at a fluid interface, collective dynamics is predicted to arise owing to activity-induced Marangoni flow even if the particles are not self-propelled. Here, we test this prediction by employing a monolayer of spherically symmetric active $$\hbox {TiO}_2$$ TiO 2 particles located at an oil–water interface with or without addition of a nonionic surfactant. Due to the spherical symmetry, an individual particle does not self-propel. However, the gradients produced by the photochemical fuel degradation give rise to long-ranged Marangoni flows. For the case in which surfactant is added to the system, we indeed observe the emergence of collective motion, with dynamics dependent on the particle coverage of the monolayer. The experimental observations are discussed within the framework of a simple theoretical mean-field model. Graphic abstract

2019 ◽  
Vol 24 (2) ◽  
pp. 851-879 ◽  
Author(s):  
Josselin Garnier ◽  
◽  
George Papanicolaou ◽  
Tzu-Wei Yang ◽  
◽  
...  

2014 ◽  
Vol 2014 (1) ◽  
pp. 13D02-0 ◽  
Author(s):  
J. N. Hu ◽  
A. Li ◽  
H. Shen ◽  
H. Toki

2011 ◽  
Vol 20 (08) ◽  
pp. 1663-1675 ◽  
Author(s):  
A. BHAGWAT ◽  
Y. K. GAMBHIR

Systematic investigations of the pairing and two-neutron separation energies which play a crucial role in the evolution of shell structure in nuclei, are carried out within the framework of relativistic mean-field model. The shell closures are found to be robust, as expected, up to the lead region. New shell closures appear in low mass region. In the superheavy region, on the other hand, it is found that the shell closures are not as robust, and they depend on the particular combinations of neutron and proton numbers. Effect of deformation on the shell structure is found to be marginal.


2001 ◽  
Vol 34 (23) ◽  
pp. 8378-8379 ◽  
Author(s):  
M. Hamm ◽  
G. Goldbeck-Wood ◽  
A. V. Zvelindovsky ◽  
G. J. A. Sevink ◽  
J. G. E. M. Fraaije

Sign in / Sign up

Export Citation Format

Share Document