plume clusters
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 1)

H-INDEX

4
(FIVE YEARS 0)

2021 ◽  
pp. 1-118
Author(s):  
Garrett A. Mitchell ◽  
Larry A. Mayer ◽  
Jamshid J. Gharib

Commercial success of marine seep hunting exploration campaigns involves acquisition of high-quality bathymetry and backscatter along with targeted coring of seep sediments. The sharp lateral chemical gradient encompassing seafloor seeps requires accurate identification of seep sites from high-resolution acoustic data. Active seeps featuring plumes of gas bubbles and oil droplets rising into the water column can be imaged in modern multibeam echosounders providing an effective approach to remotely characterizing seafloor seeps. Interpreting the seafloor position of gas plume emissions in multibeam data using existing mapping methodology is hindered by slow processing due to large files sizes, a manual “by eye” qualitative assessment of each sonar ping searching for plume anomalies, skill and fatigue of the geoscientist, and environmental or acquisition artifacts that can mask the precise location of gas emission on the seafloor. These limitations of midwater backscatter mapping create a qualitative dataset with varying inherent positional errors that can lead to missed or incorrect observations about seep-related seafloor features and processes. By vertically integrating midwater multibeam amplitude samples, a two-dimensional midwater backscatter raster can be generated and draped over seafloor morphology, providing a synoptic overview of the spatial distribution of gas plume emission sites for improved interpretation. A multibeam midwater dataset from NOAA Cruise EX1402L2 in the northwestern Gulf of Mexico is reprocessed using a vertical amplitude stacking technique. Midwater backscatter surfaces are compared to digitized plume positions collected during the survey for a comparison into assessing uncertainty in mapping approaches and an assessment of uncertainty. Results show that the accuracy of digitized geopicks over selected plume clusters vary considerably when compared to the midwater backscatter amplitude maps. This mapping technique offers multiple advantages over traditional geopicking from cost-effectiveness, offshore efficiency, repeatability, and higher accuracy, ultimately improving the detectability and sampling of active seafloor seeps through precisely located cores.


2009 ◽  
Vol 278 (3-4) ◽  
pp. 152-162 ◽  
Author(s):  
A.L. Bull ◽  
A.K. McNamara ◽  
J. Ritsema
Keyword(s):  

2007 ◽  
Vol 570 ◽  
pp. 479-489 ◽  
Author(s):  
CHAO SUN ◽  
KE-QING XIA

An experimental study of local temperature statistics in turbulent thermal convection is presented. The emissions of plumes and plume clusters are detected by an array of thermistors embedded in the top and bottom plates of a 1 m diameter convection cell. We found that the product STST′ of the temperature skewness ST and the skewness of the temperature time derivative ST′ from the embedded thermistors may be used as a measure of the intensity of plume emissions and that STST′ exhibits a pattern that corresponds well to the orientation of the large-scale circulation in the convecting flow. This is despite the fact that the temperature distribution across the plates is highly uniform, as indicated by the mean temperature of the embedded thermistors. By comparing the spatial distributions of STST′ and of the RMS temperature σ, we further find that the maximum temperature fluctuations take place in regions dominated by plume mixing instead of regions of plume emission. It is also found that temperature fluctuations inside the conducting plates have the same statistical and scaling properties as those in the cell centre.


2004 ◽  
Vol 146 (1-2) ◽  
pp. 147-162 ◽  
Author(s):  
G Schubert ◽  
G Masters ◽  
P Olson ◽  
P Tackley
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document